
 University of Central Florida
 Department of Electrical & Computer Engineering

 Smart Parking System

 EEL 4915 | Senior Design 2| Fall 2022 | Group B

 Senior Design 2 Final Documentation

 Oscar Acuna
 Computer Engineering
 oacuna@knights.ucf.edu

 Jordan Johnson
 Electrical Engineering
 jordan614407@knights.ucf.edu

 M. Ridwan
 Computer Engineering
 mridwan@knights.ucf.edu

 Kyle Carpenter
 Computer Engineering
 kylecarpenter@knights.ucf.edu

 Table of Contents

 List of Figures 7

 List of Tables 9

 1.0 Executive Summary 1

 2.0 Project Description 2
 2.1 Project Motivation 2
 2.2 Goals and Objectives 2
 2.3 Function of Project 3
 2.4 Project Block Diagrams 3

 3.0 Project Requirement Specifications, Constraints, and House of Quality 5
 3.1 Requirement Specifications 5

 3.1.1 General 5
 3.1.2 Hardware 5
 3.1.3 Web Application and User Interface Integration 6
 3.1.4 OpenCV 6
 3.1.5 Wifi Connectivity 6
 3.1.6 Power 6

 3.2 Constraints 6
 3.2.1 Standards 7

 3.3 House of Quality 7

 4.0 Existing Smart Parking Systems 8
 4.1 Existing implementation of Intelligent Parking Systems 8

 4.1.1 Indect 9
 4.1.2 ParkEagle 10
 4.1.3 CleverCiti 11
 4.1.4 Smart Parking Limited 12

 5.0 Technology Research 14
 5.1 Computer Vision 14

 5.1.1 OpenCV 15
 5.1.2 Computer Vision Techniques 15

 5.1.2.1 Edge Detection 15
 5.1.2.2 Hough Transform 16
 5.1.2.3 Regions of Interest 17
 5.1.2.4 Object Detection 18

 5.1.2.4.1 Cascade Classifiers 18

 5.1.2.4.2 You Only Look Once (YOLO) 18
 5.1.2.4.3 Object Detection Method Comparison 19

 5.2 Cameras 20
 5.2.1 OpenCV AI Kit (OAK) Cameras 21

 5.2.1.1 OAK-1 PoE 21
 5.2.1.2 OAK-D PoE 21
 5.2.1.3 OAK-D Pro PoE 21

 5.2.2 IP Cameras 22
 5.2.3 Camera Comparison 22
 5.2.4 Final Camera Selection 23

 5.2.4.1 Movidius Myriad X VPU 24
 5.2.4.2 DepthAI 24
 5.2.4.3 OAK-1 PoE Electrical Characteristics 26
 5.2.4.4 OAK-1 PoE Mechanical Information 27

 5.3 Microcontrollers 28
 5.3.1 Atmel (Microchip) 29

 5.3.1.1 ATSAM4E8CA-AN 29
 5.3.1.2 AT32UC3A1128-AUT 29

 5.3.2 Microchip 29
 5.3.2.1 ATSAME70J19A-AN 29
 5.3.2.2 PIC32MX664F064L-I/PF 29

 5.3.3 Infineon XMC4504F100F512ACXQMA1 30
 5.3.4 Comparison Chart 30
 5.3.5 Microcontroller Final Selection 30

 5.4 LEDs 31
 5.4.1 LED Options 31
 5.4.2 LED Selection 31

 5.5 Local Server 33
 5.5.1 Odyssey X86J4125864 33
 5.5.2 Raspberry Pi 4 34
 5.5.3 UDOO X86 II 35
 5.5.4 Local Server Choice 36

 5.6 Ethernet PoE Switch and Local Network Internet Access 37
 5.6.1 PoE Switches 37

 5.6.1.1 PoE Switch Choice 38
 5.6.2 Local Network Internet Access 38

 5.6.2.1 Cellular Modem 38
 5.6.2.2 Smartphone’s Hotspot and Tethering. 39

 5.6.2.3 Wireless Router 39
 5.6.2.4 Internet Access Choice 40

 5.7 Web Application Research 40
 5.7.1 Web Application Types 41

 5.7.1.1 Static Web Applications 41
 5.7.1.2 Dynamic Web Applications 41
 5.7.1.3 Single Page Web Applications 41
 5.7.1.4 Multi-Page Web Applications 42
 5.7.1.5 Animated Web Applications 42
 5.7.1.6 E-Commerce Web Applications 42
 5.7.1.7 Portal Web Applications 43
 5.7.1.8 Rich Internet Applications 43
 5.7.1.9 Progressive Web Applications 43
 5.7.1.10 Decided Web Application 44

 5.7.2 Web Development Stacks 44
 5.7.2.1 LAMP Stack 44
 5.7.2.2 MEAN Stack 45
 5.7.2.3 MERN Stack 45
 5.7.2.4 MEVN Stack 46
 5.7.2.5 Python - Django Stack 46
 5.7.2.6 Ruby on Rails Stack 46
 5.7.2.7 Decided Web Stack 46

 5.8 Mobile Application Research 48
 5.8.1 Mobile Application Types 48

 5.8.1.1 Native Apps 48
 5.8.1.2 Web-Based Apps 48
 5.8.1.3 Hybrid Apps 48
 5.8.1.4 Mobile App Choice 49

 5.8.2 Cross-Platform (Android/iOS) App Development Framework Options 49
 5.8.2.1 Ionic 49
 5.8.2.2 Flutter 49
 5.8.2.3 React Native 50
 5.8.2.4 Xamarin 50
 5.8.2.5 Cross-Platform App Development Framework Choice 50

 5.9 Web Server Research 51
 5.9.1 PaaS vs. IaaS 51
 5.9.2 Web Server and Database Hosting Providers 52

 5.9.2.1 Digital Ocean 52

 5.9.2.2 Heroku 52
 5.9.2.3 MongoDB Atlas 53
 5.9.2.4 Microsoft Azure App Services 53
 5.9.2.5 Google Cloud Platform 53
 5.9.2.6 Amazon Web Services (AWS) 54
 5.9.2.7 Web Server and Database Hosting Provider Summary 54
 5.9.2.8 Web Server Hosting Provider Selection 55

 6.0 Related Standards 56
 6.1 OSHA Standards 56
 6.2 Data Communication Standards 57

 6.2.1 Ethernet Standards 57
 6.3 Programming Standards 59

 6.3.1 Programming Naming Standards 60
 6.3.2 Programming Syntax Standards 60
 6.3.3 Programming Indentation and Bracing Standards 61

 6.4 Ingress Protection Code (IP Rating) 61
 6.5 Voltage and Power testing Standards 62
 6.6 NEMA Ratings for Enclosure Standards 64
 6.7 CPSC Standards 65
 6.8 Soldering Standards 66

 7.0 Design Constraints 69
 7.1 Economic Constraints 69
 7.2 Environmental Constraints 69
 7.3 Social Constraints 70
 7.4 Political Constraints 70
 7.5 Ethical Constraints 70
 7.6 Health and Safety Constraints 70
 7.7 Manufacturability Constraints 71
 7.8 Sustainability Constraints 71
 7.9 Time Constraints 72
 7.10 Testing and Presentation Constraints 72

 8.0 System Design 73
 8.1 Computer Vision System Design 73

 8.1.1 Computer Vision System Overview 73
 8.1.2 Software Tools 73
 8.1.3 Software Design 74
 8.1.4 Software Flowchart 75

 8.1.5 Hardware Design 76
 8.2 LED Display System Design 78

 8.2.1 Display Images 78
 8.2.2 Hardware 80
 8.2.3 Software 81

 8.3 Mobile App Design 84
 8.3.1 Mobile App Block Diagram 84
 8.3.2 Mobile App User Interface Design 85

 8.4 Web App Design 85
 8.4.1 Web App Use Case Diagram 86
 8.4.2 Database Entity Relationship Diagram (ERD) 86
 8.4.3 Web App User Interface Design 87

 8.5 Control Unit Design 90
 8.5.1 Control Unit’s Hardware 90
 8.5.2 Control Unit’s Software 91

 8.6 PCB Components 94
 8.6.1 Ethernet Components 94

 8.6.1.1 RJ45 Ethernet Port 94
 8.6.1.2 Ethernet PHY 95
 8.6.1.3 External Clock Source 96

 8.6.2 MCU LED Interface 97
 8.6.3 Step-Down Voltage Converter Circuit 97
 8.6.4 IDC Connectors 98
 8.6.5 Push Button 98

 9.0 Prototyping 99
 9.1 PCB Schematic Capture 99
 9.2 Bill of Materials 102

 10.0 Testing 104
 10.1 Hardware Testing 104

 10.1.1 Computer Vision System Hardware Testing 104
 10.1.2 Microcontroller Hardware Testing 105
 10.1.3 PCB Hardware Testing 107

 10.1.3.1 Ethernet Port and Cable Testing 107
 10.1.3.2 Ethernet PHY Testing 107
 10.1.3.3 Step-Down Voltage Converter Circuit Testing 108

 10.2 Software Testing 108
 10.2.1 Computer Vision System Software Testing 108

 10.2.2 Local Server Software Testing 110
 10.2.3 Microcontroller Software Testing 111
 10.2.4 Web App Testing 111
 10.2.5 Mobile App Testing 113

 11.0 Mounting and Installation Procedure 116

 12.0 Project Operation 119
 12.1 Camera and Server 119
 12.2 PCB and LED Display 119

 13.0 Project Budgeting and Financing 119

 14.0 Project Milestones for Each Semester 121
 14.1 Semester 1 (Senior Design 1) 121
 14.2 Semester 2 (Senior Design 2) 122

 15.0 Project Management 123

 16.0 Conclusion 124

 References 125

 List of Figures
 Figure 1: LED Display - Software Overview………………………………………… 12
 Figure 2: Hardware Block Diagram Overview…………………………………….… 13
 Figure 3: Web and Mobile App - Software Overview…………………………………. 13
 Figure 4: Parking Space Detection Diagram - Software Overview……………………. 14
 Figure 5: Example of Canny Edge Detector…………………………………………. 25
 Figure 6: Hough Transform on a Parking Lot…………………………………………. 26
 Figure 7: Cascade Classifier for Face Detection using Eyes as Feature…………...… 27
 Figure 8: Example of YOLO Object Detection ……………………………………… 28
 Figure 9: Functional Block of Belago 1.1……………………………………………… 31
 Figure 10: OAK-1 PoE ... 33
 Figure 11: High-Level DepthAI Software Architecture……………………………….. 34
 Figure 12: OAK-1 PoE Mechanical Measurements…………………………………… 36
 Figure 13: RGB LED Matrix Panel - 32x64 ………………………………………..…. 41
 Figure 14: PoE Connection Standards …………………………………………….… 68
 Figure 15: Acceptable vs Rework Needed Soldering Process ………………………… 76
 Figure 16: Acceptable vs Not Acceptable Part Mount ……………………………..…. 77
 Figure 17: Flowchart of the Computer Vision System Workflow …………………….. 85
 Figure 18: Basic Block Diagram of the OAK-1 PoE Hardware.………………………. 86
 Figure 19: LED Example Images (Double Digits) ……………………………………. 87
 Figure 20: LED Example Images (Single Digit) ……………………………………… 88
 Figure 21: LED Display IDC Connection ………………………………………..…… 89
 Figure 22: Corner Alley Example ………………………………………………….….. 90
 Figure 23: LED Display Program Flow ………………………………………..……… 91
 Figure 24: Mobile App Block Diagram ..……………………………………………… 92
 Figure 25: Mobile App GUI Prototype…...……………………………………………. 93
 Figure 26: Web App User Case Diagram ……………………………………………... 94
 Figure 27: Database Entity Relationship Diagram (ERD) ……………………....…….. 95
 Figure 28: Front Page Design …………………………………………………………. 96
 Figure 29: Video Fee Page Design …………………………………………………... 96
 Figure 30: User Administration Page Design ……………………………………….… 97
 Figure 31: Parking Administration Page Design ……………………………...………. 97
 Figure 32: Parking System Control Unit …………………………………………….... 98
 Figure 33: Local Server Java Program GUI Design ………………………………… 100
 Figure 34: Camera Text File Data Format …………………………………………. 100
 Figure 35: Local Server MySQL Database Design …………………………………. 101
 Figure 36: Simple Schematic of Interface between Ethernet Cable and MCU ……. 102
 Figure 37: Simple Schematic of LEDs on RJ45 Ethernet Port …………………...… 103
 Figure 38: Simplified Schematic for the TPS563201 ……………………………… 105
 Figure 39.1: PCB Schematics ……………………………………………………...… 108
 Figure 39.2: PCB Schematics ……………………………………………………...… 109
 Figure 40: Luxonis documentation example result of depthai_demo.py running ….... 110
 Figure 41: Point of View from Camera………………………………………………. 122
 Figure 42: Secondary Point of View from Camera …………………………….…… 122
 B

 List of Tables
 Table 1: House of Quality ………………………….………………………………… 16
 Table 2: Engineering Trade Off Matrix………………………………………………… 17
 Table 3: Object Detection Method Comparison ……..…….………….…….………… 29
 Table 4: Camera Comparison……………………………………………...…………… 32
 Table 5: DepthAI SDK Classes and Functions ………………………………………... 35
 Table 6: Absolute Maximum Ratings of the OAK-1 PoE…………………...…….…… 35
 Table 7: Recommended Operating Conditions of the OAK-1 PoE……...….…………. 36
 Table 8: Microcontroller Comparison………………………………………………….. 39
 Table 9: Specifications for Odyssey Mini PC.……………………………...………..… 42
 Table 10: Raspberry Pi 4 Specifications……………………………………………..… 43
 Table 11: Specifications for UDOO X86 II..……………………………………..…….. 44
 Table 12: Summary of PoE Switches..……………………………………..…………... 46
 Table 13: Summary of Internet Solutions..……………………………………..……… 48
 Table 14: Web Server and Database hosting plan and Pricing..………………………... 63
 Table 15: Data rate based on IEEE 802.11…………………………………..…..……... 66
 Table 16: Ethernet Wiring Standards.………………….…………………..…………... 67
 Table 17: IP Code First Digit Meaning ……………….…………………...………..… 70
 Table 18: IP Code Second Digit Meaning …………….…………………...………..… 71
 Table 19: Software Development Tools …………………………………...………..… 83
 Table 20: Ethernet PHY Port Interface/MCU MAC Interface Pins ……….…………. 104
 Table 21: Ethernet PHY Clock Interface Pins ……………..………….…………..… 105
 Table 22: MCU LED Interface Pins ……………………………………...………….. 106
 Table 23: PCB Bill of Materials ……………………………………….…………….. 109
 Table 24: Budget Breakdown ………………………………………….…………….. 125
 Table 25: Senior Design 1 Milestones …………………………...……...……..……. 126
 Table 26: Senior Design 2 Milestone …………………………..………....………… 127
 I am c

 1

 1.0 Executive Summary
 With the large number of students attending the University of Central Florida, parking
 congestion is a recurring issue that has caused a variety of problems for students and
 faculty. The current methods of dealing with this problem, an LED sign outside of each
 garage indicating “open” or “full” and a website that displays the percentage of open
 parking spots in each garage, are not reliable, and they are simply not enough to handle
 the volume of people that the parking garages at UCF endure. In this document, we
 suggest a different way of handling this problem by introducing a smart parking system
 that quickly communicates to students where open parking spots are within a garage
 using small LED signs and computer vision.

 This project takes a unique approach compared to available parking management
 systems. We do not use proximity sensors to monitor individual parking spots but
 computer vision to monitor cars entering and leaving each parking row with a parking
 garage. The combination of needing a large number of sensors to monitor every parking
 spot, power supply requirements for each sensor, complexities relating to installation, and
 maintenance requirements for all of the sensors makes for a solution that could become
 quite costly, especially when looking at large scale applications such as a UCF parking
 garage. Instead, we use cameras and computer vision to detect how many cars are
 entering a parking row and subtract it from the number of available spaces in the row.
 This information is then relayed to an LED sign at the end of a row of parking spots
 which indicates the exact number of open spots within that row.

 While our group would like the opportunity to design a parking management system for
 an entire garage at UCF, we had time and budget constraints to adhere to. Therefore, we
 designed a system just as a proof of concept that could be scaled to fit a garage of
 virtually any size. This is an essential factor of our project, as the entire motivation for
 doing it comes from UCF’s parking garage issues. With this said, we market this project
 as an efficient, accurate, and cost-effective solution for dealing with congested parking
 garages.

 The physical deliverables for our project include a camera, an ethernet switch, a local
 server, a custom printed circuit board (PCB), and an LED sign. The camera is a
 power-over-ethernet (PoE) device embedded with OpenCV, which detects the entering
 and leaving cars and updates a database running on the server. The update includes a -1
 for every vehicle that enters and a +1 for every vehicle that leaves. The server computes
 the total available spaces on that parking row. Then, it sends the new number of available
 spaces to the PCB via ethernet, which updates the number on an LED sign driven by a
 microcontroller on the PCB.

 Initially, the design included a web and a mobile app to receive the data from the server.
 These apps would provide parking information, including the number of available spots
 and where they are located, data analytics on the best times to find parking, and how long
 certain spots have been occupied. Unfortunately, due to time constraints, the web app,
 mobile app, and analytics were scrapped from the project.

 2

 2.0 Project Description

 2.1 Project Motivation
 While the number of students that attend UCF’s campus increases every year, the number
 of parking garages around campus does not. With a growing student body, naturally, there
 is an increase in the number of vehicles flowing in and out of campus throughout the day.
 During times of the day when there is a lot of overlap between class sessions that are
 either starting or concluding, a large number of students and faculty are entering and
 exiting the garages around campus, which creates a bottleneck problem. This causes the
 garages to become quite congested as people navigate them. This congestion inside of the
 garages leads to several issues, including long lines inside and outside of parking garages,
 backed-up traffic around the perimeter of the campus, and late arrivals to class due to
 difficulties finding a parking spot.

 Our group decided that UCF’s current solution to these issues is ineffective. A website
 that indicates the percentage of open parking spots inside each garage, along with signs
 outside of the garages indicating whether it is open or full, is simply not enough to ease
 the large flow of traffic that UCF’s parking garages endure. Therefore, we developed a
 smart parking system to mitigate the above mentioned problems.

 2.2 Goals and Objectives
 UCF is a growing school with more than 70,406 students currently enrolled. With such a
 large number of students in attendance in addition to faculty, this leads to the parking
 garage issues that students and the faculty face every year.

 With our project, the goal was to aid the UCF population by having a budget-friendly
 smart parking system that reduces the time it takes to get in the garage, the time it takes
 to get out of the garage, and the time it takes to find a parking spot. The objectives we
 had to help reach this goal are listed below:

 ● Use video cameras embedded with computer vision computation to detect
 entering and leaving cars from a parking row.

 ● Develop a website and mobile application where UCF students and faculty can
 get a detailed description of the available parking spots promptly.

 ● Use LED signs to communicate open parking spot locations for people navigating
 the garage.

 ● Develop our system in a way such that power consumption is low.
 ● Develop an ethernet-wired network for transmitting data between the different

 components in our project.

 With a successful implementation of our smart parking system, we hoped to conquer the
 problem of crowded parking garages with great results. Our smart parking system allows
 UCF’s students and faculty to visualize and access parking data more efficiently without
 wasting their valuable time and energy focusing on parking issues anymore. After our

 3

 project, we aimed to successfully build a realistic, budget-friendly smart parking system
 that uses low power consumption. Still, unfortunately, the ethernet connection between
 the PCB and the server was not completed. The ethernet programming of the
 microcontroller proved to be more difficult than we initially anticipated, and thus, we ran
 out of time, and it could not be completed.

 2.3 Function of Project
 The smart parking system should be capable of recognizing all vehicles entering and
 exiting the parking garages on campus and making real-time analysis of available parking
 spots to direct vehicles to new open locations. Using a camera system and computer
 vision, the vehicles are tracked through portions of the garage. A notification system built
 into the garage composed of LED signs that indicate open parking spots and how many
 are available on a specific section or level is the primary guidance for the drivers.

 Depending on whether stretch goals are achieved, the LED could vary in complexity. One
 of the target capabilities is showing available parking spot counts at each level of the
 garage, with a final stretch goal of having a complex LED system that guides drivers to
 individual parking spots. The LEDs point to specific parking spots and make for a very
 unambiguous directing system.

 In addition to physical signage in the garage, there were plans to also have a mobile app
 component for parking status updates. The UCF parking app would have been overhauled
 to feature higher accuracy of how many spots are available and additional details, like the
 rate of vehicles entering the garage and which levels are full.

 2.4 Project Block Diagrams
 The preliminary project system is summarized in the block diagrams shown in Figures 1
 through 4.

 Figure 1: LED Display - Software Overview

 4

 Figure 2: Hardware Block Diagram Overview

 Figure 3: Web and Mobile App - Software Overview

 5

 Figure 4: Parking Space Detection Diagram - Software Overview

 3.0 Project Requirement Specifications, Constraints, and
 House of Quality

 3.1 Requirement Specifications

 3.1.1 General
 ● Our system should be able to monitor at least 15 parking spots.
 ● The system must detect available spaces using OpenCV in less than 2 seconds.
 ● The system must inform drivers of the number of available parking spots using an

 LED sign
 ● The system should be hoisted a minimum of 14 feet above the ground for more

 accurate video capture.
 ● Our system should be 100% accurate within 60 seconds of a change in # of open

 spots
 ● Our system should be 90% accurate within 30 seconds of a change in # of open

 spots
 ● The above specifications were changed by the end of senior design 2. The camera

 now detects cars entering and leaving a parking row instead of monitoring
 individual spots. The system accuracy goal was changed to 95% within 10
 seconds. The project's scalability was designed with 100 cameras and 100 LED
 signs in mind.

 3.1.2 Hardware
 ● LED signs must have at least a 1,000 nit rating.
 ● LED signs must be at least 24 inches by 32 inches. A 5-inch by 10-inch sign later

 proved to be enough.
 ● A Microcontroller should have Wi-Fi and a communication module to drive the

 LED signs and transfer data. Wi-Fi was later scrapped from the project.
 ● Cameras must be OpenCV compatible.

 6

 ● Cameras must be able to see the required number of parking spots at a height of
 14 feet. This requirement was later changed to whatever height the garage's
 ceiling allowed.

 3.1.3 Web Application and User Interface Integration
 ● Easily maneuverable Graphics interface to help end-user navigate and connect

 with the implemented video transmission technology.
 ● Stream real-time video footage of parking spots for better navigation aid.
 ● Display the total number of vacant parking spots within the designated area.
 ● Allow end-users to be able to reserve parking spots.

 3.1.4 OpenCV
 ● OpenCV must detect when a parking spot is free or occupied.
 ● Train OpenCV over time to differentiate between vacant and non-vacant parking

 spots successfully.
 ● GIS must be implemented to monitor the parking spot outlines and keep a count

 of the total parking spots.

 3.1.5 Wifi Connectivity
 ● Cameras, PCB, and local server will all need to connect to a local network via

 Wi-Fi with a speed of at least 5 Mbps using the 2.4GHz frequency.
 ● A Wi-Fi router/access point will provide a local network for the cameras,

 microcontrollers, custom PCBs, and LED signs to connect to the local server. It
 should provide at least 10 Mbps upload/download speed in the 2.4GHz frequency.

 ● An ethernet switch with PoE-enabled ports or PoE injectors will be implemented
 to provide power to the cameras.

 3.1.6 Power
 ● Cameras must be powered by power-over-ethernet (PoE)
 ● PCB must be battery powered. This requirement was later changed to “PCB to be

 powered by PoE.

 3.2 Constraints
 With less than a year to deliver this project, time is the primary constraint that our group
 must adhere to. To ensure we are making considerable progress in a reasonable amount of
 time, we have created a list of project milestones we will follow over the next year.
 Additionally, since our project consists of expensive components, we must ensure that
 our budget does not get out of control. Our group has agreed that we will spend no more
 than $2,000, and an initial budget is shown in section 4.0. Additional constraints that we
 must adhere to for our system to work correctly are listed below.

 ● The system must be able to work in the daytime and nighttime. For nighttime, the
 camera must be able to work with at least 0.001 lux.

 7

 ● The local Server must be able to be accessed remotely. If Windows OS or a Linux
 OS is used, software such as TeamViewer allows controlling the server remotely.

 ● The site must provide Internet access of at least 5Mbps.

 3.2.1 Standards
 ● All electronics must be enclosed in cases designed following the IP65 standard to

 protect the equipment from dust and water.
 ● Cameras will be powered using Power over Ethernet standard 802.3af.
 ● Wi-Fi network must be standard 802.11ax to provide 2.4GHz network

 connectivity.
 ● The site must provide an energy source of 120V/60Hz
 ● Network communication of cameras and LED signs should use TCP/IP standards.

 3.3 House of Quality
 The house of quality, shown in Table 1, shows the positive and negative correlations
 between engineering and marketing requirements. In addition, the table helped in
 determining the engineering-marketing trade-off. In Table 2, the engineering trade-offs
 are shown, which indicates how one category affects others.

 Table 1: House of Quality

 Engineering Requirements

 Power Waterproof Day/Night
 Functionality Accuracy Cost

 - + + + -

 Speed + ↑ ↓ ↓

 Outdoor
 Functionality + ↓ ↑↑ ↑↑ ↑ ↓↓

 Visual
 Indicators + ↑ ↓

 Area
 Coverage + ↓ ↓ ↑ ↓↓

 Mobile/Web
 Application + ↑ ↓

 Cost - ↑ ↓ ↓↓ ↓ ↑↑

 Target Engineering
 Requirements ≥ IP65 ≤ 0.001 lux 90% in 30s,|

 100% in 60s ≤ $2000

 8

 Table 2: Engineering Trade-Off Matrix

 Power Waterproof Day/Night
 Functionality

 Accuracy Cost

 - + + + -

 Power - ↓ ↓ ↑

 Waterproof + ↓

 Day/Night
 Functionality

 + ↓

 Accuracy + ↓

 Cost -

 4.0 Existing Smart Parking Systems
 Over the years, many companies have implemented different solutions to solve the global
 parking issue. Each of the implementations has its own innovative and optimized
 solutions to aid the population and introduce the intelligent parking concept in day-to-day
 lives. These solutions have steered the project’s motivation to improve some of the
 existing solutions to improve parking problems. This section will cover the existing
 systems to solve the growing parking congestion issue.

 4.1 Existing implementation of Intelligent Parking Systems
 The project we chose to pursue gave us quite a bit of freedom with the type of design we
 could develop with the fact that there were many ways to go about making parking
 garages more efficient. The team decided to use cameras and computer vision techniques
 in our design, though it is common for existing smart parking systems to use video
 cameras, various sensors, or a combination of both. With that said, some existing smart
 parking systems motivated our project. Brainstorming ideas gathered from existing
 solutions and improving upon those ideas and implementations is a great way of solving
 global problems. The majority of the big companies bounce ideas off of each other and
 create better solutions to support the previous implementations. Following the same
 strategy, for this Smart Parking project, a couple of other companies and their innovations
 were utilized. Some of their system providers have already created ample opportunities
 for growth within their systems. Indect’s parking system allows camera sensors, state of
 the art casing that would withstand any natural calamities. Cleverciti has taken customer
 experience to another step with a subscription-based system. Companies like Parkeagle
 helped the parking garages and corporate building parking solutions and took the
 initiative to handle large implementations of urban city parking issues. Then companies
 like Smart Parking Limited, with their globally scaled solutions, have incorporated the

 9

 usage of cloud-based platforms along with customizable applications to cater to the
 audiences. The immense range of innovative solutions has paved the way for further
 improvement of parking dilemmas and the implementation of smart city concepts with
 technological advancements.

 4.1.1 Indect
 One of the biggest companies in the United States, Disney, have implemented the concept
 of Smart Parking in one of their newer addition of theme parks. Disney Springs, at the
 heart of Orlando, has become one of the most prominent tourist spots in Central Florida.
 So to tackle the parking problem for the massive number of people visiting the area daily,
 Disney Springs has adopted the new smart parking system provided by Indect. Indect
 achieves the solution to the parking issue by monitoring every parking spot in the garage
 and indicating their status, whether empty or not. This status is shown on top of each
 parking spot with a LED light. The LED light turns green if the parking spot is vacant,
 and in the case of the spot being occupied, the LED light turns Red. In addition, Indect
 provides endless level-counting and wayfinding solutions for Disney Springs by
 integrating LED signs at different locations (i.e., entrance, exit, and turns) inside the
 garage for convenience. It also allows license plate recognition and locating the
 whereabouts of a car as a feature if someone mistakenly forgets the location of the parked
 vehicle.

 Indect’s Single Space Ultrasonic sensors provide the ability to integrate RGB color (red,
 green, blue) LEDs through parking spaces to be visible to consumers. These also have the
 ability of IVIS interface, which immensely helps with Day/Night lighting modules to
 reserve energy. They also allowed space to be customizable to different colors depending
 on the need. Since the embedded light system communicates with a framework via a
 wireless network, a simple change from a computer can trigger any necessary changes in
 the light’s colors or mode within a matter of seconds. The Ultrasonic Mini Sensor is EMC
 and CE certified and comes with ultrasonic transducers for better size efficiency. With the
 ultra-flat design, this module also has an ultrasonic sound sensor for wayfinding
 capabilities that are inaudible to humans. One more variant of the Ultrasonic Diagonal
 Sensor uses sound sensors to decide parking spot availability. It achieves this feat with
 the emission of ultrasonic waves and echoes to calculate the distance to receive data and
 make decisions based on that. This version is also CE and UMC-certified.

 Indect’s camera-based Sensors are the most sophisticated and state-of-the-art
 implementation of smart parking. This system has been fully automated and does not wait
 or require manual human inputs for any of its functionalities. This line of camera-based
 solutions is called UPSOLUT, and one of these sensors has the capability of detecting up
 to six parking spots at a time. Their cameras are also waterproof and dust resistant to
 keep up with weather calamities. The IP67 sensor, the only implementation of such
 sensors in commercial production, allows the UPSOLUT to even function submerged in
 water and airtight sealing, making the maintenance of the sensors a very minimum. With
 video recording and sound alert features, this system allows wayfinding for end-users,
 which is convenient. This particular line of products also comes with kiosks installed in
 the parking garages for car-finding activities. Since this particular system comes with

 10

 license plate recognition, utilizing the UPSLOUT app, consumers can quickly locate their
 cars. Any activity in the parking lot gets sensed by the sensors within the cameras that
 trigger the video recording process, which is later streamed. The fisheye camera allows
 video capture of up to QXSGA resolution at 25 frames per second. The PTZ support in
 the video streams makes license detection and recognition possible. The stream is also
 defaulted to a black-and-white format with 100 seconds max intervals to maximize
 storage efficiency. The advanced machine-learning algorithms for vehicle detection
 within the system make UPSOLUT the most accurate camera-based system available.

 Other than this, Indect also has a Surface Mounted Sensor embedded product line. This
 particular product line utilizes induction pads that are embedded with electromagnetic
 vehicle detection sensors. This enables extra features like vehicle count calculation at the
 toll booths. These magnetic field vehicle detectors use X, Y, and Z-axis detections of the
 earth’s magnetic field. Each sensor is continually on the lookout for any abnormalities
 within the components of the magnetic field. Any new data entry within the X, Y, and Z
 components suggests vehicle movement and makes decisions on parking space
 detections.

 The many different implementations of different sensors, as well as the usage of camera
 sensors to implement a smart parking environment, makes Indect one of the pioneers in
 the smart parking industry. The usage of mobile applications to stream video in real-time
 and the car way-finder feature also sets the company apart from other companies in the
 innovation aspects. The Smart Parking project implements a lot of theories and
 technologies that Indect has already utilized more commercially. This infrastructure of
 technologies can be an immediate motivation for the Smart Parking project to base off of.

 4.1.2 ParkEagle
 Parkeagle is one of the up-and-coming companies researching smart parking and
 broadening its focus to smart city communications. Parkeagle enables its smart parking
 system and caters the solution to the end-users through a real-time information update
 through mobile apps. Parkeagle utilizes ultra-low-power smart parking sensors to detect
 the parking spot status. These sensors communicate via server to display the data
 calculated on an app and even digital road signs. A lot of cities in Europe are utilizing
 ParkEagle’s smart parking system. Parkeagle also implemented a StreetEagle cloud
 system to take the data from the sensors as input and send it to a digital server, where
 algorithms are run to make decisions on parking occupancy, traffic flows, and vehicle
 types. Later these data are presented in the Park Eagle management system for the
 end-users. The app also has a geofencing feature that allows the drivers to know traffic
 flow and parking conditions at a given spot ahead of time. The dashboard is catered to
 fulfill the needs of parking condition information and traffic data for end-users.

 Parkeagle has also created technological advancements in modern parking systems and
 vehicular communications flow in general. The usage of sensors and their capability of
 communicating directly with cloud systems can indeed revolutionize the concept of smart
 parking. Since all the algorithmic computation is being done on the cloud, real-time
 communication between the cloud and end-user side is much more efficient. Their mobile

 11

 parking app and digital parking signs also add to the convenience of the catered
 audiences. This project’s smart parking app could use the cloud methodologies of
 Parkeagle for better communication between web apps and camera sensors. The machine
 learning algorithm taking place in the cloud instead of the web server would enable quick
 run time of real-time video streaming as well as quick data update on the consumer user
 end.

 4.1.3 CleverCiti
 CleverCiti adds to the advancements in the parking system with a turn-by-turn parking
 guide for their end-users. CleverCiti works with municipal companies to reduce local
 traffic and unnecessary emissions and solve the drivers’ current parking issues. They are
 helping local companies to streamline and boost parking revenues with the advancements
 in parking technology. They have introduced battery-powered lamppost sensors to
 monitor traffic and parking availability in city areas. The company is improving the
 on-street parking situation in urban areas, such as parking lots at shopping centers,
 corporate offices/campuses, and train stations.

 CleverCiti utilizes overhead sensors made in Germany that allows the detection of parked
 cars and vacant parking spots. However, for smoother communication and to optimize
 run time, these sensors only send the GPS coordinate data sets to the server of the
 available spaces only. This helps the system gather relevant data and also maximizes
 memory storage uses. The sensors on the lamp posts can also support up to four smart
 sensors and power them around the clock. This aids in smart city deployment with the
 ability to send traffic congestion data, vehicle mode data, and of course, street-side
 parking data. These sensors also can communicate via an LTE network as well as the
 existing power line connected to the posts.

 The smart parking system of CleverCiti has a unique feature that accurately guides the
 drivers to the available parking spots. They have implemented this GPS-like feature only
 within specific areas of municipal parking areas. This saves a lot of time for the end-users
 as they know exactly which spot to go towards to attain a vacant parking spot. Along
 with these, CleverCiti has commercialized a subscription-based mobile app system that
 allows their customers to purchase or subscribe to their interface and solution set. This
 way, the permit holder and monthly subscribers get optimum parking notifications and
 facilities through the app. They also have taken extra steps for their customers to opt-in
 for a dynamic reservation feature, where customers may look ahead to reserve a vacant
 parking spot ahead of time and avoid all the hassles.

 CleverCiti has taken smart parking to another level by commercializing a
 subscription-based system. They have implemented and focused on the customer service
 aspect of parking and emphasize catering their goals and vision to the end users’ comfort.
 The subscription-based system and the dynamic reservation set the system apart from any
 other smart parking technology. The current smart parking project can implement the
 innovative features of CleverCiti’s mobile app to incorporate further assistance and
 improve the overall user experience.

 12

 4.1.4 Smart Parking Limited
 Award-winning company Smart Parking has been a world leader in technological design
 and advancement in the development and management of parking systems. With their
 intelligent parking structure, they have improved parking experience in shopping and
 retail, supermarkets, airports, hospitals, and even universities. The company is
 emphasizing the concept of a smart city through the development and improvement of
 smart parking systems. The connection of IoT devices across the city through their
 SmartCloud system would aid in the global implementation of the intelligent parking
 concept of the company. SmartCloud, developed by Smart Parking Limited, is a globally
 scaled, real-time internet of things platform. This cloud platform was deployed in parallel
 with the deployment of the Google cloud. This platform enables the company to optimize
 in-house data collection and management.

 The company’s smart sensors and smart devices communicate directly with this platform.
 The integration of the SmartCloudAPI enables complete connection with the assets to
 provide real-time support. Even the firmware support for the smart sensors and remote
 management has been made possible and widespread with the integration of SmartCloud.
 With these advantages, this company has revolutionized the parking experience with a
 robust mobile app called Tessera. This application is developed to aid urban city areas
 and municipalities efficiently with their parking management. This end-to-end
 compliance management system incorporates all the advantages provided by the
 company to provide an efficient solution suited for any parking management system. This
 app provides dashboards that are supported in real-time to showcase the live visual
 activity of the parking site in a visual map form.

 Google Maps is greatly incorporated within the app, which provides detailed real-time
 information on traffic tariffs and parking citations for specific areas at any given time. It
 helps users find vacant bays for parking and offers a feature to give directional support to
 the users to avoid any parking discomfort. The app goes as far as detecting disabled
 parking availability, limited-duration parking as well as pay booths for paid parking.
 Within the app, users can locate the history of their parking experiences and review
 specific invoices or location experiences. This app also can be modified depending on
 industry use. The company allows a fully customizable parking app for its client
 according to their own needs. Certain companies in certain cities may have particular
 needs that one generic application may not be able to provide. Thus with the
 implementation of SmartCloud, the company has implemented the opportunity of
 customizing the mobile app according to consumer needs.

 The network gateways implemented within the parking system require multiple sensors
 across areas. Thus for any parking system, multiple sensor units called SmartSpots are
 implemented. These individual units are scattered to gather precise data on the parking
 area status from the sensors embedded within. Some of the SmartSpots use sensors that
 can communicate with the cloud system in wireless form, which is important in areas
 where devices do not need to communicate with each other. However, there are also
 sensors deployed that communicate with each other via fiber optic or ethernet.

 13

 Along with all these web-based technologies implemented, there are also real-time
 supported display signs that the company has issued. These signs are called signage and
 are used to communicate with the users and show the traffic flow status, available parking
 spot count, and much more. Using digital network communication, these signs provide
 live updates with the data gathered directly from SmartCloud. One neat feature these
 LED signs offer is the directions. According to the number of available spots, these signs
 provide directional data flashed on the LED. There are multiple uses for these signs. For
 level-by-level implementation, signage comes with the total vehicle count and the
 directional data view. Other than these overhead displays, some signs can be mounted on
 walls to provide support for outdoor parking areas as well as the parking entrances and
 exits. The color is dynamically customizable by the administrator with different daytime
 and nighttime modes for energy conservation. The sensors implemented have their
 customizations as well. Inground sensors have been developed to better communicate
 with SmartSpot gateways using ANPR. These sensors are water-resistant, and casings are
 designed to withstand natural calamities. Mainly for outside parking spots, these sensors
 are utilized. The surface-mount sensors aid in the easy installation aspect. Their sensors
 work perfectly with exposed sites with not fully supported surfaces. Roof, cable support -
 where further construction work is impossible, these surface mount sensors work
 perfectly.

 Embedded within the floor, these sensors are designed to provide better visibility with
 LED settings to support visibility for increased traffic and visual challenges on the
 surfaces. Lastly, the most popular overhead indicator sensors are used for parking garages
 with many complex routes for parking. These sensors are supported with high visibility
 LED lights to make it easy for motorists to locate the desired parking spot. These parking
 sensor lights can be controlled dynamically according to the business needs of the
 administrator. The RGB LED colors are utilized for every one of the sensors, which also
 communicate directly with the SmartCloud API to provide data in real-time to the digital
 application at the end-users; discretion. Along with all these innovative technologies
 already implemented, the Automatic Number Plate Recognition feature aids in the police
 and traffic management facilities. Otherwise known as License Plate Recognition, the
 technology allows the monitorization of vehicle registration plate recognition features to
 better secure and manage the car parking infrastructures. For toll agencies and
 government pay-per-use highways, this ANPR technology has aided. High-capacity
 cameras with advanced machine learning algorithms incorporating the perspective of
 lighting conditions and angles allow an extremely accurate ability to scan and decipher
 each license plate. Depending on mirrored plates and lighting conditions, these camera
 sensors also use IR optimization to work with different lighting modes, allowing efficient
 and accurate picture capturing at any time. This technology has been used for paid
 parking lots as well, where the sensors send the data directly to SmartCloud, where an
 automated payment script is in charge of payment collection and billing the users based
 on license number.

 Smart Parking Limited indeed provides one of the most developed and robust support for
 day-to-day parking complexities. With the implementation of the company’s cloud
 platform, this system has the potential to grow and advance vastly along with the tide of

 14

 time. The business perspective of this system has a lot of potentials, with the ability to
 cater to the consumers based on metrics like locations, terrains, and other necessary
 needs. A global mobile application keeps the implementation of the system up to date and
 easy to maneuver for the client. The different sensor applications also cater to different
 needs based on infrastructure and location. License plate recognition brings another realm
 of possibilities in automated billing opportunities for municipal bug areas and
 government facilities. Smart Parking Limited is a pioneer in changing the path of parking
 technological advancements. Even though implementing such a large-scale system is not
 possible for the current smart parking project, the abundant opportunities for growth and
 improvement within the intelligent parking business are, without a doubt, a primary
 motivator for the project.

 5.0 Technology Research
 In this section, we introduce the potential technologies used in our Smart Parking System.
 The areas discussed include computer vision, cameras, microcontrollers, LED matrix
 displays, and servers.

 5.1 Computer Vision
 Computer vision is an area of artificial intelligence that allows computers and systems to
 derive meaningful information from images, videos, or other visual inputs and make
 recommendations based on that information. Ultimately, computer vision aims to give
 computers and systems the ability to see and perceive the world as humans do. For our
 project, we use computer vision for our system to accomplish five tasks:

 1. Detects the position of all available parking spaces.
 2. Identify whether that parking space is open or occupied.
 3. Uniquely identify cars by color or license plate.
 4. Differentiate between a parking space occupied by a human or a vehicle and react

 accordingly.
 5. Calculate how long a car occupies a spot.

 We needed to use a computer vision library to achieve these tasks. While there are a
 variety of libraries that could meet our needs, including OpenCV, Tensorflow, and
 SimpleCV, our group has decided to work with OpenCV. This is mainly due to OpenCV
 having more algorithms to work with than any other library, a large support community
 that helped us become proficient with this library, and our group already has some
 experience with using OpenCV from classes we have taken at UCF.

 The compute vision tasks were changed to detecting vehicles entering and leaving a
 parking row within the garage; therefore, it does not identify individual spaces for
 occupancy. How long a car occupied a spot was scrapped from the final implementation.

 15

 5.1.1 OpenCV
 OpenCV is an open-source computer vision and machine learning software library. It has
 a broad area of applications and provides thousands of computer vision algorithms
 relating to image processing, video analysis, object detection, and object identification
 segmentation, just to name a few. This library was written in C++, and its primary
 interface is in C++; however, it supports a wide variety of other programming languages,
 including Java, Python, and Matlab. In the case of Python, this is due to the use of
 wrappers where the computationally intensive code in C++ is working in the background
 while the user can use customizable pre-defined functions. For our project, we would like
 to use Python because it is a general-purpose programming language that is simple, easy
 to learn, and more readable than other languages.

 What separates OpenCV from other computer vision libraries is that it was designed for
 real-time vision applications. This will be useful for our smart parking system since we
 will always work with a live dataset rather than a pre-recorded dataset. Additionally, we
 would like the correct number of open parking spots to be reflected on our LED sign
 within 30 seconds of a change, and working with a computer vision library that is
 designed for real-time applications could help out with this.

 5.1.2 Computer Vision Techniques
 To achieve the goals described in previous sections, we will need to implement a
 combination of computer vision techniques. This section will describe the techniques that
 we could expect to apply in our system.

 5.1.2.1 Edge Detection
 Edge detection is a computer vision technique used for identifying the points in a digital
 image where there is a sharp change in image brightness. These points where the image
 brightness changes sharply are called edges or boundaries. This technique is effective as
 it can extract useful structural information from an image and drastically reduce the
 amount of data to be processed. This was likely a technique to be used in our system as
 we needed our camera to be able to identify what a parking space is from a digital video
 feed. Since there is a sharp change in brightness between the pavement and the lines
 painted on the ground to designate a parking spot, these would show up as edges in the
 image, as shown in Figure 5.

 16

 Figure 5: Example of Canny Edge Detector [15]

 There are a variety of edge detection techniques, including the Prewitt edge detector,
 Laplacian edge detector, and the Sobel edge detector; however, the most commonly used
 edge detection technique is the canny edge detector which is shown in the figure above.
 While this method is more complex than other edge detection methods, it is also the most
 effective. This technique uses a multi-stage algorithm defined by the six steps below:

 1. Convert digital image or video to grayscale
 2. Apply a Gaussian filter to smooth the image and reduce noise
 3. Find the intensity gradients of the image to help identify edge intensity and

 direction
 4. Apply non-maximum suppression to thin the edges in the image and eliminate

 false responses to the edge detector
 5. Apply a double threshold to determine strong, weak, and irrelevant edges in

 image
 6. Use hysteresis edge tracking to convert weak edges into strong ones only if there

 is a strong edge close to it

 While edge detection is an effective method for extracting useful structural information
 from an image, there are a couple of drawbacks that should be mentioned. The first is that
 the size of the output image will be shrunken compared to the input image because the
 filters used for edge detection shrink the size of the image. Since the size of the image is
 shrunken, this creates another drawback where there is a loss of a lot of valuable
 information, especially from the outer perimeters of the image. With this said, there is a
 technique to combat these drawbacks called image padding, where additional pixels are
 added to the perimeters of the image to avoid losing valuable information from the input
 image. In the final product, edge detection was not implemented because a vehicle
 detection library, which was already developed and trained, was used instead. Therefore,
 the team did not have to go through the intricacies of applying this technique.

 5.1.2.2 Hough Transform
 The Hough transform is a feature extraction technique that can detect any shape in an
 image as long as that shape can be represented in a mathematical form. Since a straight

 17

 line can be represented as y = mx + b in the cartesian coordinate system or as 𝝆 = xcos𝜃
 + ysin𝜃 in the polar coordinate system, this method can detect the straight lines that
 define parking spaces. With this being said, the polar coordinate system is primarily used
 in the Hough transform, as the cartesian coordinate system cannot define vertical lines.

 This method is most effective after edge detection has been applied to the image, as the
 information needed for the Hough transform has already been extracted. The hough
 transform looks at each edge point defined by the edge detector and then looks at other
 edge points within the image to see if there is an intersection. Once the hough transform
 sees that there is a high amount of intersections between a set of edge points, it can
 conclude that a line can be marked through those points, as shown in Figure 6.

 Figure 6: Hough Transform on a Parking Lot [17]

 This is effective because the output image from an edge detector is still an image
 described by its pixels; however, after the Hough transform has been applied, we now
 have an image that is defined by the characteristic equations representing a parking spot,
 further refining the amount of data to be analyzed from the image. With this said, there is
 one thing to mention about using this method, being that for it to perform best, we must
 begin with a set of empty parking spaces. Using parking spaces that are already occupied
 could create some inaccuracies from the output of the hough transform. In the final
 product, Hough transform was not implemented by us because a vehicle detection library,
 which was already developed and trained, was used instead. Therefore, the team did not
 have to go through the intricacies of applying this technique.

 5.1.2.3 Regions of Interest
 After the lines defining a parking spot have been drawn onto the image by the hough
 transform, we need to define the specific areas of interest, i.e., each parking spot. One
 method of doing this is using the intersections between the vertical and horizontal lines
 defined by the hough transform and the endpoints to extract a list of x and y coordinates.
 From this list of 2d points, we could map out the corners of each parking spot and group
 them into sets of 4 such that a unique box is created for every spot.

 An alternate method of mapping out the regions of interest would be to use the OpenCV
 Mouse as a Paint-Brush function. This would allow us to manually draw the bounding
 boxes for each area of interest. However, our system would require human input before it

 18

 can work properly. This means that our system would not be completely autonomous, and
 we believe it is a method that should only be pursued if the autonomous method
 described above does not work for us.

 5.1.2.4 Object Detection
 After we obtain a layout of the parking spots to be monitored, we will then need our
 system to be able to identify whether a parking spot is occupied or not. This task relates
 to object detection, and there are quite a few ways we could accomplish this. This section
 describes a few available methods and some initial thoughts to consider for each, then
 compares them and presents a final selection. In the final product, none of the object
 detection techniques were implemented by us because a vehicle detection library, which
 was already developed and trained, was used instead.

 5.1.2.4.1 Cascade Classifiers
 Object detection using Haar feature-based cascade classifiers is a machine learning-based
 approach to this concept. With this method, a cascade function is trained from many
 positive and negative versions of images and then used to detect objects in other images.
 Essentially, this method tells OpenCV exactly what features to look for in an image and
 then makes the decision of whether a certain object exists or not through the use of
 convolutional matrices. For example, cascade classifiers can be used for face detection as
 shown in Figure 7 below. The cascade classifier looks for eyes and then uses this
 information to conclude if there is a face or not.

 Figure 7: Cascade Classifier for Face Detection using Eyes as Feature [3]

 For our case of needing to detect cars in an image, pictures with cars occupying parking
 spots would be the positive images, and pictures with empty parking spots would be the
 negative images needed to train the cascade function. The program would then need to
 extract features from each of these images and see any similarities between images to
 conclude if a car is in the image or not. With this said, there are already cascade
 classifiers for car detection. However, we could probably make this method more
 accurate by taking sample pictures of parking spaces at UCF. While our current method
 of counting the cars in an image involves detecting a car, haar cascades could also be
 effectively used for other strategies of counting cars, as explained in Section 10.2.1.

 5.1.2.4.2 You Only Look Once (YOLO)
 The You Only Look Once (YOLO) algorithm is a deep learning-based approach to
 real-time object detection. This method differs from other deep learning methods as the
 YOLO detector can be defined as a one-stage detector. This means that YOLO will

 19

 outperform other deep learning methods, such as the Region-Based Convolutional Neural
 Network (R-CNN), which is a two-stage detector; however, what it gains in speed, it
 loses in accuracy. Though this is not to say that YOLO is not an accurate algorithm, it is
 just not as accurate as two-stage detector algorithms.

 Functioning as a stage-detector means that YOLO requires an image or video feed to pass
 through its network only once, hence the name. This is possible because YOLO reasons
 with an entire image rather than successively examining several regions in an image to
 detect the objects in it.

 This algorithm begins by dividing an image into ‘S’ x ‘S’ cells. It then uses a unique
 neural network using the characteristics of an entire image or video to predict multiple
 boxes, with every one containing a specific object. If the center of an object is in one of
 these cells, this cell will now be responsible for detecting the object. Depending on if an
 object exists in a cell or not, the algorithm will now assign a score to each cell
 representing the level of confidence for the object present in the box. If an object does not
 exist in the cell, the score should be zero. From here, a convolutional neural network
 based on the GoogLeNet neural network is used to provide a class-specific confidence
 score for each box. The output of the YOLO detection network will be the original input
 image or video with localized object detection and their respective classes attached to it,
 as shown in Figure 8 below.

 Figure 8: Example of YOLO Object Detection [33]

 There is a variation of the YOLO object detector called Tiny-YOLO, which is a smaller
 version of YOLO; however, it is less accurate than YOLO. We will need to verify just
 how accurate each of these methods is through testing.

 5.1.2.4.3 Object Detection Method Comparison
 To summarize the object detection methods described above, Cascade Classifiers are a
 straightforward method to go about object detection as you simply use convolution
 matrices to extract the features from an image. This is a simple, quick, and easy method;
 however, we expect it to not be as accurate as other methods. On the other hand, the
 YOLO detector is a highly accurate method for object detection; however, implementing

 20

 this method would be very complex. A method that could prove to be a bit less complex
 but still share many similarities with the YOLO method is the Tiny-YOLO method,
 though this will need to be verified.

 After considering each method, we realized that the one that suits us best would depend
 on our strategy to count the number of available parking spots. If we go with our original
 method described in previous sections of detecting the car itself, then YOLO or
 Tiny-YOLO would be the best option for us. If we decide to pursue another strategy to
 count available parking spots, such as the ones described in section 10.2.1, Haar
 Cascades may be the more suitable option to fit our needs. We did not know which
 method best suited us until it was tested. The table below compares the object detection
 methods we were considering. It is important to mention that this table is not 100%
 accurate and is only based on speculation from the research we have done. In our final
 implementation, none of the object detection techniques were implemented by us because
 a vehicle detection library, which was already developed and trained, was used instead.

 Table 3: Object Detection Method Comparison

 Method Complexity Speed Accuracy Power Need

 Haar Cascades Low High Low Low

 YOLO High High High High

 Tiny-YOLO Medium High Medium Medium

 5.2 Cameras
 The camera is a vital part of our Smart Parking System because it is the sensing element
 that is capturing the data to be used by the other components within our system. Our
 system used one camera mounted on a tripod facing the entrance to a row of parking
 spaces. The camera was angled such that it had enough room to track cars passing by.

 With such a large variety of cameras that could be implemented in our project, our group
 created a list of specifications that we wanted to see from the camera. First, we expect the
 camera to have at least an IP65 weatherproof rating, so the system can remain functional
 in rainy, humid, dusty, and hot conditions. Second, the camera needed to handle lowlight
 conditions such that the system could still function at night time. Third, we expected the
 live video feed coming from the camera to be easily extracted to easily showcase how the
 computer vision was working in real-time. Fourth, we expected the camera to be
 power-over-ethernet (PoE) compatible to easily transmit data, increase the distance we
 could wire our camera, and decrease the number of cables needed for our system. Lastly,
 we expected our camera to have a field of view between 70 and 105 degrees such that the
 amount of required parking spaces in our system is captured while preserving video
 quality.

 21

 With this said, our group did not want to spend more than $2,00 on our project and were
 willing to change some of the specifications for our camera to adhere to this constraint.
 The types of cameras we decided to consider for our project included the OpenCV AI Kit
 PoE and IP cameras.

 5.2.1 OpenCV AI Kit (OAK) Cameras
 The OpenCV AI Kit (OAK) is a family of cameras that embed performant spatial
 sensing, neural inference, and computer vision functionality. They are driven by Intel’s
 Movidius Myriad X Vision Processing Unit (VPU), which is a type of microprocessor
 that allows all computations to be done at the camera level, completely offloading the
 robotics perception of our system to the camera itself. The OAK cameras employ Sony’s
 IMX378 RGB image sensor, which allows for a maximum frame rate of 60 fps at a
 resolution of 12 megapixels, autofocus, and a display field of view of 81 degrees.
 Additionally, each camera is fitted with a ¼ - 20 tripod mount on the bottom of the unit,
 which eases lifting the camera to a high enough level to view the parking spaces.

 The OAK camera family is separated into three groups, including the USB line, the PoE
 line, and the IoT line. We have decided to work with the PoE cameras as using ethernet
 cords will provide sufficient cable length between the camera, our ethernet switch, and
 our PCB. Additionally, the PoE cameras come with IP67-rated housing. The PoE line
 consists of three cameras, including the OAK-1 PoE, OAK-D PoE, and the OAK-D Pro
 PoE. Each of these cameras is further described below.

 5.2.1.1 OAK-1 PoE
 The OAK-1 PoE is the baseline camera of the OAK PoE line. It employs just a single
 RGB image sensor camera which pipes its video feed directly into the Myriad X VPU
 and DepthAI for AI processing. Since the OAK-1 PoE utilizes onboard python scripting,
 it provides a variety of functionalities at the camera level, including object tracking,
 corner detection, feature tracking, custom computer vision functions, and neural
 interference. Additionally, if we did want to extract a recorded video or live video stream,
 this camera also provides H.264, H.265, and MJPEG encoding. With all of these
 functionalities, the unit price of this camera is $249.

 5.2.1.2 OAK-D PoE
 The OAK-D PoE differs from the OAK-1 PoE because it uses three onboard cameras
 rather than just one. In addition to the single RGB image sensor, it includes two
 OmniVision OV9282 grayscale image sensors capable of producing video at a max frame
 rate of 120 FPS with a resolution of 1 MP. Using these two additional cameras gives the
 OAK-D PoE the capabilities of 3D object localization, 3D object tracking, and depth
 perception on top of the existing functions with the OAK-1 PoE. The addition of the
 capabilities brings the unit price of this camera from $249 with the OAK-1 PoE to $299.

 5.2.1.3 OAK-D Pro PoE
 The OAK-D Pro PoE is essentially the same camera as the OAK-D PoE; however, the
 OAK-D Pro PoE is designed to handle low-light situations. It accomplishes this through

 22

 active infrared illumination in the Belago 1.1 Laser Dot Projector. Referring to Figure 9
 below, the functional block of the Belago 1.1 is shown.

 Figure 9: Functional Block of Belago 1.1 [2]

 Vertical cavity surface-emitting lasers (VCSEL) are a type of laser diode where laser
 beam emission happens perpendicular to the top surface. This laser dot projector
 illuminates the area in the camera’s field of view using 4700 laser dots and acts as a
 flashlight for the camera. This helps with disparity matching in low-light situations,
 especially for blank surfaces with little to no texture, such as a wall or a floor. It is also
 important to mention that this laser dot projector meets the class one specification for
 lasers meaning that it will cause no harm to the human skin or eyes. In addition to the
 laser dot projector on this camera, it also uses an infrared LED floodlight to assist in
 low-light situations. Adding these night vision abilities brings the unit price of the
 OAK-D PoE from $299 to $399.

 5.2.2 IP Cameras
 The second type we considered for our project was an IP camera. While using an IP
 camera provides a very budget-friendly option, it would also introduce some unique
 challenges that could have a negative impact on our system.

 One of these challenges was that no computer vision computations would happen at the
 camera level. Since these types of cameras do not include a microprocessor, we would
 need to extract the live video feed into a Python program via IP address using the
 OpenCV library and then break the video into individual frames before being able to
 apply computer vision techniques. Not only would this make our system have to handle
 large amounts of data being transmitted between the camera and the local server, but
 there would also run the risk of us having to work with a python program that could
 become very complicated. Additionally, IP cameras typically only come with two
 mounting options: a wall mount or a ceiling mount, in contrast to the OAK cameras,
 which come with a tripod mount. This would have added complexities since we could
 mount cameras wherever we wanted because we had to test our system on public parking
 lots and garages. After looking at multiple IP cameras, the two that best fit the needs
 described in section 7.1 were the ANNKE C800 and the RLC-810A.

 5.2.3 Camera Comparison
 Table 4 shows the criteria we used to compare each of these cameras.

 23

 Table 4: Camera Comparison

 Model OAK-1 PoE OAK-D PoE OAK-D Pro
 PoE

 ANNKE
 C800

 RC-810A

 Type Microprocessor Microprocessor Microprocessor IP Camera IP Camera

 Unit Price $249.00 $299.00 $399.00 $79.99 $84.99

 Size (WxHxD) 81.9 mm x 81.9
 x 31 mm

 130 mm x 65
 mm x 29.9 mm

 111 mm x 47
 mm x 31.1 mm

 155 mm x
 70 mm

 192 mm x
 66 mm

 Video
 Resolution 12 MP 12 MP 12 MP 8 MP 8 MP

 Speed 60 fps 60 fps 60 fps 30 fps 25 fps

 FOV (degrees) 81 81 81 102 87

 Power PoE 802.3af PoE 802.3af PoE 802.3af PoE 802.3af PoE 802.3af

 Designed for
 Low Light No No Yes Yes Yes

 Depth
 Perception No Yes Yes No No

 Weatherproof
 Rating IP67 IP67 IP67 IP67 IP66

 Easy
 Implementation Yes Yes Yes No No

 5.2.4 Final Camera Selection
 After considering the cameras analyzed in the sections above, we decided that the OAK-1
 PoE was the best camera to use for our project. Although this camera was not designed to
 work in low light conditions, it still satisfies all of our other requirements while
 remaining friendly to our $2,000 budget, as we paid $249 per camera. In addition, in
 parking garages where good lighting was present, such as in parking garage C at UCF, the
 camera performed well. The OAK-D Pro PoE was the only OAK camera designed to
 function in low-light situations; however, this camera also offers a variety of features that
 would be overkill for the system we are designing, and we are not willing to spend $399
 per camera.

 The OAK-1 PoE, shown in Figure 10, offers full IEEE 802.3af, Class 3 PoE compliance
 with 1000BASE-T speeds (1gbps) for communication and power. As mentioned in
 previous sections, this camera is driven by the Movidius Myriad X VPU, and DepthAI is
 what we will be using to communicate with this VPU and complete all AI and computer
 vision computations.

 24

 Figure 10: OAK-1 PoE [1]

 5.2.4.1 Movidius Myriad X VPU
 The Movidius Myriad X VPU is the component of the OAK-1 PoE that allows all AI and
 computer vision computations to be completed from the moment video is captured
 before any type of data communication happens through ethernet. This VPU contributes
 heavily to making our system fast as it promises 4 Trillion Operations Per Second
 (TOPS) processing power (1.4 TOPS for AI applications).

 This version of the Myriad X VPU used in the OAK-1 PoE makes use of a new deep
 neural network developed by Intel called The Neural Compute Engine, which is
 specifically designed to run deep neural networks at high speed and low power. This was
 effective for our project as deep neural network inferences are a possible method we
 could use to detect vehicles and make the decision of whether it is entering or leaving a
 parking area. With this said, the Myriad X VPU offered many features, including the
 ability to run any custom-built AI models, video encoding, computer vision, and object
 tracking. We had access to these features through DepthAI, further explained in the next
 section.

 5.2.4.2 DepthAI
 DepthAI is an open-source hardware, software, and AI-training platform built around the
 Movidius Myriad X VPU. It focuses on the combination of 5 key features which are
 artificial intelligence, computer vision, depth perception, performance (high resolution
 and FPS, multiple sensors), and being an embedded, low-power solution. Together, these
 features allow DepthAI to be a spatial AI + computer vision platform that gives robots
 and computers the ability to perceive the world as a human can. DepthAI uses a Python
 Application Programming Interface (API) to connect to, configure, and communicate
 with the OAK devices within a system, as shown in Figure 11.

 25

 Figure 11: High-Level DepthAI Software Architecture [1]

 The following list highlights the important aspects of Figure 11:

 ● The Host Side is the computer that the OAK device is connected to. This can be a
 Raspberry Pi, Windows PC, or another compatible computer. Multiple OAK
 devices can be connected to one host and uniquely identified.

 ● The Device Side is the OAK device itself. If anything happens on this side, it is
 running on the Movidius Myriad X VPU.

 ● The Pipeline is a complete workflow that consists of nodes and the connections
 between them. When we received our OAK cameras, we first needed to create
 this pipeline, populate it with nodes, configure the nodes and the connections
 between them, and then load it onto the OAK device.

 ● The Nodes are the building blocks of the pipeline. Each node provides a specific
 functionality, configurable properties, and inputs/outputs. An example of a node
 would be the EdgeDetector which receives two inputs, an input image, and an
 input configuration, and then produces one output, the output image. Once a node
 is created and configured as desired, it can be linked to other nodes.

 ● The Connection is the link between one node’s input and another node’s output.
 These connections define the pipeline data flow and establish where messages
 should be sent to achieve an expected result.

 ● Messages are the communication that happens between linked nodes. Messages
 sent between linked nodes are the only way they can communicate with one
 another.

 ● XLink is a middleware capable of exchanging data between an OAK device and
 the host. XLinkIn sends data from the host to the OAK device, and XLinkOut
 sends data from the OAK device to the host.

 It is also important to note the DepthAI Software Development Kit (SDK), built on top of
 the Python API library. The DepthAI SDK is a Python package containing classes and
 functions that help in performing common tasks while using the Python API. The

 26

 package primarily consists of managers which handle different aspects of development,
 as shown in Table 5.

 Table 5: DepthAI SDK Classes and Functions

 Classes and Functions Description

 depthai_sdk.managers.PipelineManager Helps in setting up processing pipeline

 depthai_sdk.managers.NNetManager Helps in setting up neural networks

 depthai_sdk.managers.PreviewManager Helps in displaying video previews from
 OAK cameras

 depthai_sdk.managers.EncodingManager Helps in creating videos from OAK
 cameras

 depthai_sdk.managers.BlobManager Helps in downloading neural networks as
 MyriadX blobs

 depthai_sdk.fps For FPS calculations

 depthai_sdk.previews For frame handling

 depthai_sdk.utils For various most-common tasks

 5.2.4.3 OAK-1 PoE Electrical Characteristics
 Protecting the OAK-1 PoE from any electrical damage was vital as this would have a
 negative impact on its reliability; therefore, it was important to consider the electrical
 characteristics of the camera. Below are two tables, Table 6 and Table 7, showing the
 absolute maximum ratings and the recommended operating conditions of the OAK-1
 PoE.

 Table 6: Absolute Maximum Ratings of the OAK-1 PoE

 Symbol Ratings Min Max Unit

 V PoE 802.3af, Class3 input supply voltage range 37 57 V

 I PoE Maximum Input Current Requirement 350 mA

 T stq Ambient Temperature 0 60 C

 27

 Table 7: Recommended Operating Conditions of the OAK-1 PoE

 Symbol Ratings Min Typ Max Unit

 V PoE 802.3af, Class3 input supply voltage range 37 57 V

 P Power Consumption Requirement 4 5 7.5 W

 P IDLE V BUS Idle Power Draw (Myriad X Booted) 2.5 W

 T A Ambient Operating Temperature 50 C

 According to Luxonis, the power usage for the OAK-1-PoE ranged between 1.94 W (at
 standby) and 4.56 W (at max power consumption). During normal operation, we can
 expect the camera to pull about 4.2 MW. With this said, the ethernet cable used in our
 system should have a CAT5E rating or higher. This allowed us to achieve the 1 gigabit
 per second of data transfer promised by this camera and meet PoE requirements.
 Additionally, on the device end, the ethernet cable should use a shielded 8-pin RJ45
 connector which should not be an issue since this is standardized.

 5.2.4.4 OAK-1 PoE Mechanical Information
 The OAK-1 PoE is a fairly small camera with a height of 81.9 mm (114 mm if you
 include the tripod mount) and a width of 81.9 mm, a length of 31 mm, and a weight of
 294 grams. Figure 12 shows the physical dimensions of this camera.

 Figure 12: OAK-1 PoE Mechanical Measurements [1]

 28

 5.3 Microcontrollers
 The microcontroller is responsible for driving the LEDs to display where available
 parking is. Since the local server handles the computation of available parking, the
 microcontroller is relieved of performing any space computations on its own. Instead, the
 MCU will solely display messages to drivers indicating how many spaces are available in
 a region and which way to drive to the available space. Through daisy-chaining, multiple
 LED matrixes can be driven by the same microcontroller. This relieves the need for
 multiple boards, each driving individual displays.

 The PCB on which the MCU was integrated is connected directly to an external power
 source. Therefore, no particular power constraints must be considered for the
 microcontroller selection. Another factor was choosing a microcontroller with an
 integrated Ethernet controller, which could greatly reduce the complexity of the PCB
 design. The tradeoff was that the maximum data rate supported is 100 Mbps compared
 with the 1 Gbps supported data rate from a separate Ethernet controller. This tradeoff was
 a total non-factor, though, in a practical sense because the amount of data to be
 transmitted to the microcontroller is so minuscule compared to the allowable bandwidth.
 Therefore, the supported 100 Mbps data rate for most integrated Ethernet controllers was
 sufficient.

 To drive the LED display(s), there had to be enough available general-purpose
 input/output pins (GPIOS) from the MCU to address all of the LEDs. Normally, the
 number of pins needed could be simply calculated from the below equation.

 𝑃𝑖𝑛𝑠 = 𝑅𝑜𝑤𝑠 + 𝐶𝑜𝑙𝑢𝑚𝑛𝑠

 Since the 32 x 64 LED display is 2048 LEDs in total; the MCU must have enough pins to
 address the LEDs via multiplexing. Charlieplexing was considered, but it has limitations
 to its abilities in displaying RGB and changing brightness. But these pin considerations
 are not relevant in our case since the selected display makes use of shift registers and
 demultiplexers that allows for much fewer pins (16) to address a greater number of
 LEDs. Since each LED has three colors (RGB), they take approximately 3 bytes in RAM.
 This results in 6144 bytes. When accommodating for a second display to be
 daisy-chained, the byte count doubles to 12288 bytes. This puts the bare minimum RAM
 size at around 12 KB. According to SparkFun’s product description, for a similar LED
 display at 32 x 32, a minimum clock frequency of 16 MHz is needed to display an image
 with tolerable flicker, so a microcontroller capable of running beyond that frequency was
 needed to drive the LEDs. Most microcontrollers with integrated Ethernet controllers
 have a minimum frequency of 66 MHz, so that issue was avoided.

 Aside from technical requirements, the only factors left to consider were the recency,
 availability, and price of the microcontrollers. Additionally, the form factor was an
 element to consider since the board design had to be prototyped on a breadboard. With
 this in mind, a DIP package MCU made the most sense for prototyping, with the potential
 to pivot to more traditional form factors for the final PCB design. However, there were no
 MCUs in the DIP form factor with an integrated Ethernet controller, so our hand was

 29

 forced into that area. That left us with standard form factors like SOP (Small Outline
 Package) and QFP (Quad Flat Package), both surface-mount packages.

 5.3.1 Atmel (Microchip)
 The selected Atmel processors date themselves with the name of Atmel still attached to
 the product. Atmel was bought by Microchip in 2016 but has continued releasing its
 product lines only under the new Microchip name.

 5.3.1.1 ATSAM4E8CA-AN
 The ATSAM4E8CA-AN is an older microcontroller released in 2016 that fulfills all of
 the earlier requirements. It has a 32-bit bus width and is built on the ARM Cortex M4
 core. The MCU has 512 KB of flash memory, 128 KB of SRAM, and a 120 MHz clock.
 The form factor is the low-profile quad flat package (LQFP). It currently is very cheap,
 $2.04 per MCU. Despite all these positives, it has the one downside of being a 100-pin
 chip. This is an excess of pins we do not need for our design and could create
 unnecessary complications in the PCB design phase.

 5.3.1.2 AT32UC3A1128-AUT
 The AT32UC3A1128-AUT is one of the older microcontrollers, having been released in
 2012. It has similar specifications to the above MCU except for a reduced frequency of
 66 MHz, 128 KB of flash memory, 32 KB of SRAM, and the AVR architecture. The form
 factor is the thin quad flat pack (TQFP). With this MCU also being 100-pin and more
 expensive at $8.39 per chip, this MCU quickly became the first choice to ditch.
 Additionally, its age would be a source of liability when attempting to flash it or perform
 other operations that would require new vendor tools that may no longer support the
 MCU.

 5.3.2 Microchip
 The following are Microchip’s microcontrollers, one of which is much newer and has a
 far better chance of being supported in Microchip’s ecosystem of vendor tools. Of all
 microcontroller producers/designers, Atmel and Microchip were the only companies to
 consistently produce MCUs with integrated Ethernet controllers.

 5.3.2.1 ATSAME70J19A-AN
 The ATSAME70J19A-AN is a continuation of the shared line with the
 ATSAM4E8CA-AN. This time, the core is an ARM Cortex-M7 on a 32-bit bus. The
 MCU has 512 KB of flash memory the 256 KB of multi-port SRAM and runs at a max
 frequency of 300 MHz. The form factor is LQFP. Not only does this MCU blow the
 others out of the water, but it has only 64 pins, making it a great candidate for the final
 PCB. It costs $11.48 per chip.

 5.3.2.2 PIC32MX664F064L-I/PF
 The PIC32MX664F064L-I/PF was released in 2010, making it the oldest microcontroller
 on this list. It is based on the MIPS32 4K processor core. It runs at a max frequency of 80

 30

 MHz and has 64 KB of flash and 32 KB of SRAM. It has 100 pins and is in the TQFP
 form factor. This MCU may be the worst option of the bunch because of its lackluster
 showing in the memory category. At $7.51 per chip, it's not the choice to make.

 5.3.3 Infineon XMC4504F100F512ACXQMA1
 The XMC4504F100F512ACXQMA1 is the one microcontroller that is not connected to
 Microchip, which also fits the desired criteria. It was released in 2017 and is based on the
 ARM Cortex-M4 core. It runs at a max frequency of 120 MHz and has 512 KB of flash
 and 128 KB of SRAM. Its form factor is LQFP and has 100 pins. The cost was $11.27
 per chip. The Infineon MCU was a decent option, but the reality that it matches or
 underperforms the Microchip ATSAME70J19A-AN in every major category makes it a
 secondary option. The major problem was the 100-pin layout of the chip, which could be
 a problem when designing the PCB.

 5.3.4 Comparison Chart
 Table 8 shows the criteria we used to compare the microcontrollers.

 Table 8: Microcontroller Comparison

 Part Number
 Atmel

 ATSAM4
 E8CA-AN

 Atmel
 AT32UC3A
 1128-AUT

 Microchip
 ATSAME70

 J19A-AN

 Microchip
 PIC32MX66
 4F064L-I/PF

 Infineon
 XMC4504F
 100F512A
 CXQMA1

 Release Year 2016 2012 2021 2010 2017

 Unit Price $2.04 $8.39 $11.48 $7.51 $11.27

 Form Factor LQFP TQFP LQFP TQFP LQFP

 Pins 100 100 64 100 100

 Flash Size (KB) 512 128 512 64 512

 SRAM (KB) 128 32 256 32 128

 Frequency (kHz) 120 66 300 80 120

 SPI/I 2 C/USB Yes Yes Yes (No SPI) Yes Yes

 Ethernet
 Controller Yes Yes Yes Yes Yes

 LCD Controller Yes Yes Yes No No

 5.3.5 Microcontroller Final Selection
 Putting together the chart made the decision as obvious as possible. We selected the most
 powerful microcontroller that fulfilled our purposes, the Microchip
 ATSAME70J19A-AN. It was not the cheapest, but for only a couple of dollars more than

 31

 the competitors, it could far outperform in speed, total flash, SRAM, and being the better
 form factor with a smaller pinout. It was the best fit for our needs.

 5.4 LEDs
 In the grand scheme of the garage parking enhancements, the LEDs play the role of being
 the immediate indicator for drivers to find open spots. The LEDs purely indicate where
 open parking spots are, nothing more. The microcontroller receives data from the local
 server and then drives the LED to display whatever data was indicated by the server. That
 could be an arrow or a number indicating the total open spots in that region. There were
 several types of displays that could have gotten the job done, but it was up to how much
 we wanted to customize the look and feel of what was to be displayed.

 5.4.1 LED Options
 The first option was a seven-segment display. These displays are very popular and
 straightforward to interface with. They can display numerical values and some letters, but
 they are pretty limited on that front. If one wants to display arrows or sentences, they are
 out of luck. Another problem is that most seven-segment displays for sale are far too
 small to work for our use case. To have the display large enough, we would have most
 likely had to manufacture our display. Manufacturing a display was not worth the effort
 since it takes focus away from where we were trying to innovate on our project.

 The second option was to use a dot-matrix LED display. This would give the ability to
 have far more precise images displayed, like arrows, full sentences, patterns, etc. The
 main trade-off was that because there is a higher density of LEDs, more GPIO pins are
 needed to drive the display. However, there is a workaround to limit the increase in pins
 from the microcontroller driving the display. If, in addition to multiplexing, shift registers
 are used, single pins can be stretched to control many more LEDs. This limits control of
 the LEDs and disallows the use of Pulse Width Modulation (PWM), but it offers far
 greater flexibility by freeing up the MCU’s resources.

 The third option was to use a Liquid Crystal Display (LCD). LCDs are popular for many
 applications. They provide a high-definition image and display vibrant colors. But an
 LCD can be considered a continuation of the philosophy behind a dot matrix LED
 display. The LCD has an even higher resolution and, generally, a smaller form factor to
 go along with it. This results in LCDs often being the most demanding display to drive of
 the three options listed. LCDs can be great in their specific applications, but when trying
 to display a large image powered by a microcontroller, a different display works better.

 5.4.2 LED Selection
 Since seven-segment displays cannot show details and LCDs are too demanding, the dot
 matrix LED display is what made the most sense for our project. It can display arrows
 directing drivers where to go and even show letters and numbers in combination to
 potentially indicate specific open parking spots. There were multiple options for which
 matrix LED display to choose from, but SparkFun had the best offerings for what we
 needed in the 32 x 64 dot matrix LED display, as shown in Figure 13. Their displays

 32

 could do better than directly addressing pixels through multiplexing by using shift
 registers to help address the different colors of the LEDs (because they are three-color
 RGB). This way, only 16 MCU pins were needed to drive the LED display, rather than
 the 96 that would normally be needed.

 Figure 13: RGB LED Matrix Panel - 32x64

 Another advantage of this display is that it can be daisy-chained with another to form a
 bigger LED sign. Or, through clever programming, the daisy chain can be treated as
 separate displays so that different messages can be displayed concurrently. Either way,
 this display provides a lot of flexibility for how we choose to communicate where drivers
 should look for open parking spots.

 33

 5.5 Local Server
 The parking system relies on a central processing computer (local server) for
 communication between the cameras, LED displays, and the web server supporting
 mobile and web applications. This local server receives the available spaces from the
 cameras, updates its local database, and sends the open space data to the display’s
 microcontroller and the cloud database server. The server also operates as the gateway
 providing internet access to the parking system. One of the goals in choosing an
 appropriate server is to ensure the server is capable of handling the parking system for an
 entire parking garage, such as Parking Garage C at UCF. Another goal is to choose a
 computer to perform as a server with all the components built-in; this feature helps in our
 cost-effective goals of the project. The technical term for a computer that meets this
 description is called a Single Board Computer (SBC), a complete computer where the
 microprocessors, memory, and input/output functions are built-in on a single circuit
 board. It normally does not contain expansion slots for additional peripherals, and the
 amount of RAM is usually predetermined [30]. One feature that is not required for the
 normal function of the server but is needed during development and a demonstration is a
 display port. Therefore, the server or computer board to choose from needs to have a
 display port. As mentioned before, the final implementation of the project does not
 include the web and mobile app, and thus, there is no connecting from the local server to
 any webserver on the internet.

 In this research, three boards were selected to be analyzed and discussed that could
 potentially meet the parking system’s needs. These three boards are discussed in the
 following three sections.

 5.5.1 Odyssey X86J4125864
 Edge computing devices are playing an increasingly important role in the field of IoT
 devices. ODYSSEY is a series of Single Board Computers for edge computing
 applications. This mini PC has an Intel processor and an ARM microcontroller on the
 same board. Its large built-in heat sink covers the whole bottom part of the board, and in
 conjunction with the CPU fan, both can efficiently dissipate the processor’s heat and
 ensures that the system stays well within its operation temperatures despite the Florida
 Summer heat. The board supports Windows 10 or Linux. This board presents a
 coprocessor as an additional feature, the Microchip ATSAMD21G18 microcontroller
 based on the ARM Cortex M0+; however, at this moment, there is no particular use for it,
 and therefore, it would remain unused if this board is picked. In addition, the board offers
 an incredible amount of computational power; at a 2.0 GHz base CPU frequency with
 bursts of 2.7GHz is more than capable of processing the data input from the video
 cameras, space availability calculations, data outputs to the LED displays, and data
 output to the web server in the cloud. The Intel processor comes with a built-in graphics
 processing unit, and therefore it supports a display. One downside of this board is the
 price; for $238, it is somewhat pricey and will probably play a significant role in the
 decision stages of the project. The specifications for this model are summarized in Table
 9.

 34

 Table 9: Specifications for Odyssey Mini PC

 Specifications Description

 Name and Model Odyssey X86J4125864 by Seeed

 CPU 2.0-2.7GHz 64-bit quad-core Intel Celeron J4125

 Coprocessor Microchip ATSAMD21G18 32-bit ARM Cortex M0+
 onboard

 Graphics Intel UHD Graphics 600 (Frequency: 250 – 750MHz)

 Memory RAM LPDDR4 8GB

 Wireless Dual Band Wi-Fi 802.11 a/b/g/n/ac @ 2.4 and 5 GHz
 HT160 and Bluetooth BLE 5.0

 Networking Intel I211AT PCIe Dual Gigabit LAN

 Storage 64GB eMMC

 USB 2.0 Type-A x2, USB 3.1 Type-A x1, USB 3.1 Type-c x1

 Video Interfaces HDMI 2.0a, DP1.2a

 Expansion Slots
 M.2 (Key B, 2242/2280), SATA III, M.2 (Key M,
 2242/2280), PCIe 2.0 x4, Micro SD card Socket; SIM
 card Socket.

 Power DC Jack 5.5/2.1mm or Type-c PD; DC Jack input:
 12-19V; Type-C input: 15V DC

 Dimensions 110x100mm (4.3x4.3 inches)

 OS Windows 10 and Linux

 Price $238

 5.5.2 Raspberry Pi 4
 Raspberry Pi is a series of single-board computers made by the Raspberry Pi Foundation,
 a UK charity. It is a tiny and affordable computer that can be used to learn to program and
 build hardware projects, automation, edge computing, and industrial applications. It can
 run Linux and provides general-purpose input and output (GPIOs) pins that allow
 controlling electronic components such as sensors. The specific model discussed in the

 35

 section is the Raspberry Pi 4 Model B. A summary of specifications can be found in
 Table 10.

 Table 10: Raspberry Pi 4 Specifications

 Specifications Description

 Name and Model Raspberry Pi 4 Model B

 CPU Broadcom BCM2711, Quad-core Cortex-A72 (ARM v8)
 64-bit SoC @ 1.5GHz

 Memory RAM 1GB, 2GB, 4GB, or 8GB LPDDR4 SDRAM (Depending
 on the model)

 Wireless 2.4 GHz and 5.0 GHz IEEE 802.11ac wireless, Bluetooth
 5.0, BLE

 Networking Gigabit Ethernet

 Storage Micro-SD card slot for loading operating system and data
 storage

 USB 2 USB 3.0 ports and 2 USB 2.0 ports

 Video Interfaces 2 micro-HDMI ports (supports 4K), 2-lane MIPI DSI
 display port, 2-lane MIPI CSI camera port.

 Expansion Slots Raspberry Pi standard 40-pin GPIO header.

 Power

 5V DC via USB-C connector (minimum 3A)
 5V DC via GPIO header (minimum 3A)
 Power over Ethernet (PoE) enabled (requires separate
 PoE HAT)

 Dimensions 3.37 x2.22 inches (56.5 x 85.6 mm)

 Others H.265 and H264 decode/encode. OpenGL ES 3.1, Vulkan
 1.0

 Price 1GB $30, 2GB $45, 4GB $55, $8GB $75

 5.5.3 UDOO X86 II
 UDOO is a family of Open Source Arduino-powered Mini PC compatible with Windows,
 Android, and any Linux Distro. The UDOO X86 II series is a powerful x86 maker board
 with an Arduino Leonardo-compatible board embedded on the same board. The
 specifications of this board are shown in Table 11.

 36

 Table 11: Specifications for UDOO X86 II

 Specifications Description

 Name and Model UDOO X86 II Advance Plus

 CPU Intel Celeron N3160 @ 1.60-2.24GHz, Quad-core

 Coprocessor Atmega32U microcontroller.

 Graphics Intel HD Graphics 400

 Memory RAM 4GB DDR3L Dual Channel

 Wireless M.2 Key E slot for optional Wireless Modules

 Networking Gigabit Ethernet connector

 Storage 32GB eMMC storage

 USB 3x USB 3.0 Type-A ports

 Video Interfaces 1xHDMI and 2x miniDP++ ports

 Expansion Slots SATA, M.2 Key B SSD slot, micro SD card slot.

 Power DC in Jack 12V 3A

 Dimensions 4.72 inches x 3.35 inches (120 mm x 85 mm)

 Others

 HW Video decode H.265/HEVC,
 H264, MPEG2, MVC, VC-1, WMV9, JPEG, VP8;
 HW Video encode: H.264, MVC, JPEG
 1 x UART, 1 x I2C, 1 x SPI
 23 digital I/O (PWM)
 12 analog inputs

 OS Support Windows 10, Linux, Android

 Price $214

 5.5.4 Local Server Choice
 All three boards are capable of being a suitable computer to work as the control unit. The
 most powerful one, the Odyssey board, comes with all the components needed to install
 Linux and start developing, except for the power supply. In contrast, the Raspberry Pi not
 only does not come with a power supply, but it does not provide onboard storage.
 Nonetheless, even after adding the price of an SD card to the cost of the raspberry pi, it

 37

 costs less overall than the Odyssey or the ODOO boards. Since the parking project
 demonstration was planned to have a couple of cameras and a couple of LED signs, then
 any of the three boards could do the job. However, the availability of the boards played
 an important role when selecting the computer. When building the prototype, the
 raspberry pi 4 was out of stock, with no option to backorder it. The ODDO board was
 also unavailable, and its website did not provide future availability. Although the
 Odyssey board was currently out of stock, their website allowed backorders, with an
 estimated shipping date of May 7th of, 2022. Although the team decided that the
 Raspberry Pi was the right choice to maintain a cost-effective approach, it was ultimately
 the availability of the boards that was the deciding factor.

 Initially, the Intel-based Odyssey X86J4125864 board from Seed was picked as the
 server; however, it became unavailable for a long time and only became available as a
 backorder. Therefore, the team decided to try getting a Raspberry Pi 4 model B with 8GB
 of RAM, which was not a simple choice since it was out of stock everywhere. Still, it
 became available later as a kit from the Canakit website. By the time it was ordered and
 received, the software development for the parking system had already begun using an
 intel-based computer. Since the Raspberry Pi is based on the ARM architecture, the team
 predicted some incompatibilities. After a few days of unsuccessfully trying to run java
 version 17, MySQL database, and the parking system software, the Raspberry Pi was put
 aside in lieu of an intel-based computer. Finally, a mini pc capable of running Microsoft
 Windows, and thus intel-based, was ordered. The model Mini S from Beelink has an 11th
 Generation Intel Celeron processor, model N5095, which has four cores and runs up to
 2.9GHz; it has 8GB DDR4, 128GB SSD, and Windows 11 Pro. After a quick preliminary
 test, it was determined that this minicomputer could run the software needed without any
 issues.

 5.6 Ethernet PoE Switch and Local Network Internet Access

 5.6.1 PoE Switches
 Power over Ethernet (PoE) is a technology that describes the transmission of electricity
 along with data in a single ethernet cable. It is used to deploy powered devices to areas
 where electricity is unavailable or to minimize the expense of installing additional
 electric wires and outlets. Therefore, a PoE switch is a regular switch with many ethernet
 ports that provide power and data to devices. A parking system that entitles the entire
 garage will require many cameras; therefore, a large PoE switch would be required.
 However, a small 5-port switch will be enough for the project’s proof of concept. The
 chosen camera in the research section of this document requires PoE 802.3af; this version
 of PoE provides 12.95 watts and a maximum current of 350mA. It is easy to match the
 PoE requirements of the camera to a PoE switch because as long as the switch supports
 PoE 802.3af or above, it will work.

 There are several small switches readily available with the desired PoE feature. For
 example, NETGEAR carries a 5-port PoE switch, model GS305P-100NAS, from which
 four ports provide PoE+ (PoE = 802.3af and PoE+ = 802.3at, the next PoE generation
 that almost doubles the wattage). PoE+ devices are backward compatible with PoE

 38

 devices; therefore, this gigabit switch will work with the camera, and its cost is $49.99.
 TP-Link carries a suitable switch for $44.99; model TP-Link TL-SG1005P V2 includes
 four PoE ports. Another switch, model GPOE204 made by STEAMEMO, is a 5-port
 gigabit switch for $33.99 that offers four PoE+ ports. It comes with additional features
 such as VLAN and 1 SPI uplink port; however, these features are not relevant to the
 parking system and will not be discussed. A summary of these switches can be found in
 Table 12.

 Table 12: Summary of PoE Switches

 Brand Model No. of PoE ports Price

 Netgear GS305P-100NAS 4 PoE+ ports $49.99

 TP-Link TL-SG1005P V2 4 PoE ports $44.99

 STEAMEMO GPOE204 4 PoE+ ports $33.99

 5.6.1.1 PoE Switch Choice
 The switch the team decided on was the STEAMEMO, model GPOE204. It offers
 enough ports for the parking system, so it is an excellent option if the team adds more
 than one camera and LED display. Also, with a price tag of $33.99, this model is the most
 cost-efficient option.

 5.6.2 Local Network Internet Access
 The local network needs internet access for the parking system to communicate with the
 database in the cloud to support mobile and web applications. Several options exist to
 provide internet access to the local network, such as using a wireless router to connect to
 UCF’s network, a cellular modem, or a personal cell phone’s hotspot feature. As
 mentioned before, the web application and mobile application features were not
 implemented, and therefore, none of the methods described in this section were needed as
 internet access was no longer required.

 5.6.2.1 Cellular Modem
 Cellular modems add 2G/3G/4G cellular connectivity to laptops, desktops, and tablets;
 they come as USB dongles, PCI or PCIe express cards, or standalone modems [22]. USB
 dongles connect to a USB port and are usually available for Windows and Linux. For
 example, Hologram.io offers a 2G/3G Nova Global Cellular Modem for $83, $5 for the
 SIM card, and a monthly cost of $0.70 plus $0.08 per MB of data used [23][24]. This is a
 good option because it works on Windows, Linux, and Raspberry Pi single-board
 computers.

 The PCI, PCIe, or M.2 cellular modems connect to an available slot on the motherboard
 of choice, and after installing the drivers and a SIM card, the server can connect to the
 internet and share its internet access with the local network via ethernet. For example,

 39

 Quectel, a global IoT solutions provider [25], offers the EM06-A LET Cat 6 cellular
 module for $49.50, which was compatible with the single-board computer model
 Odyssey X86J4125864. This module plugs into the M.2 slot on the board, and it needs an
 antenna and a SIM card to function. The SIM card can be the same one provided by
 Hologram.io using the same monthly plan mentioned above; an antenna for this modem
 is available for about $2 to $4 each.

 Standalone modems are also called hot spots and are sold by many cellphone companies;
 these devices connect to a cellular network and share their internet access via a Wi-Fi
 network to which several WiFi-enabled devices can connect. For example, Verizon offers
 these mobile hotspot modems for $79.99, $199.99, $299.99, and $399.99 depending on
 the selected speed (i.e., 2G, 3G, 4G, or 5G) and a one-time activation fee of $35 [26].

 5.6.2.2 Smartphone’s Hotspot and Tethering.
 Most modern smartphones can turn into Wi-Fi hotspots; they can share their data with 4G
 or 5G internet access via a Wi-Fi signal. The local server would have to have a Wi-Fi
 adapter to connect to the Wi-Fi signal. However, the server would still need to be
 connected to the local network via ethernet cable. Although a smartphone hotspot is not a
 permanent solution to a parking system, it can still work for the parking system proof of
 concept. As an alternative, smartphones can be connected to a computer via a USB cable
 to be used as a cellular modem to connect to the internet; This is called tethering.

 5.6.2.3 Wireless Router
 A wireless router can create a local network that serves as the internet gateway by
 connecting to UCF’s existing network. The WAN port on the router can be connected to
 any UCF’s provided ethernet port on-site. However, after talking to UCF’s IT department,
 it was determined that UCF’s network policy does not allow wireless routers to be
 connected to its network for security reasons. Therefore, connecting a wireless router to
 UCF’s network is out of the question for our parking system proof of concept. This
 research found an alternative wireless router that allows personal mobile device tethering
 capabilities to be plugged into the router to connect to the internet. The router then shares
 its internet via ethernet ports and a Wi-Fi network. This Wi-Fi router model GL.iNet
 GL-AR750S-Ext costs $72.90, and it comes with two-gigabit ports and supports both
 2.4GHz and 5GHz Wi-Fi signals.

 Table 13 is a collection of solutions and the breakdown of their pricing and monthly
 subscription rate for visual purposes.

 40

 Table 13: Summary of Internet Solutions

 Description Unit Price Monthly cost

 USB 2G/3G Nova Global Cellular Modem $83.00 $0.70 + $0.08 per MB

 EM06-A LET Cat 6 Cellular Module $49.50 $0.70 + $0.08 per MB

 Verizon Mobile Standalone Hotspots
 (2G/3G/4G)

 $79.99 -
 $399.99

 $60.00

 Smartphone’s hotspot or Tethering
 (T-Mobile)

 N/A $0
 (included in phone’s plan)

 GL.iNet FL-AR750S-Ext (Using
 smartphone Tethering)

 $72.90 $0

 5.6.2.4 Internet Access Choice
 Many choices were found that can provide internet access to the parking system. The
 most expensive solutions were the Verizon hotspots, but one fantastic feature these units
 have is that they are battery-powered, an excellent option for testing purposes on-site
 where electrical outlets may not be available or close by. However, the team decided it
 was not a cost-effective solution due to the monthly commitment of $60 for a data plan.
 The following considered units were the cellular modules. Each unit’s price was not that
 bad; however, the EM06-A module is the cheaper option, and since both monthly
 commitments are the same, the EM06-a module would be a clear choice among the two.

 On the other hand, the tethering option of smartphones connected directly to a USB port
 on the local server is the most cost-effective since any team member’s smartphone can be
 used at no extra cost. Fortunately, both Windows and Ubuntu operating systems support
 this scenario and can share this internet access to the network via their ethernet port.
 However, to have a backup Wi-Fi network in case there is difficulty connecting either the
 camera or the LED displays to the local server via ethernet cable, the Wi-Fi router with
 the tethering feature was chosen instead. The team will not incur any monthly fees
 associated with cellular modem data plans with this tethering option. Since the proof of
 concept is a small scale of the entire parking system, the team feels this option would be
 the most appropriate.

 5.7 Web Application Research
 Some form of web outlet would be our main way of communication with the
 consumers/users. One of the main aspects of any technological project has come down to
 the UI/UX aspect of the application. The complete and robust implementation of
 WebApp not only makes the users want to utilize the app more but also aids in increasing
 the digital footprint of the App. We intended to have a user-friendly, highly accessible,
 completely responsive WebApp to support our SmartParking system and cater to our

 41

 users. The final implementation of our project, as mentioned before, was not
 implemented due to not having enough time.

 5.7.1 Web Application Types
 With the increasing demand for various technologies, the need for web applications has
 also changed with time. Depending on the business needs and consumer requirements,
 there have been implementations of nine different web application formats.

 5.7.1.1 Static Web Applications
 The most primitive and original form of a web application is the static web application,
 and it implies exactly what it suggests. These websites are static, meaning there is no
 communication module between the server and the user. Most of these static websites are
 effortlessly simple with the only implementation of basic HTML and CSS language.
 There could also be GIFs, videos, or animated banners included on these websites to
 attract users. With mobile applications, these web application types do not integrate well
 due to the need to send and receive huge amounts of data, which often leads to poor
 application performance. Mostly for the Web-Based Portfolio of an individual or a
 corporation where no back-end interaction is needed, these types of applications are
 utilized.

 5.7.1.2 Dynamic Web Applications
 One of the most popular forms of web applications, the Dynamic Web App allows
 real-time communication. It allows data generation upon the user’s request and backend
 server response. They allow direct connections and interactions on the client side of the
 web app. They are significantly more complex, technology-wise, than static web apps
 and have various interactive components for full functionality. Databases are used to
 store the data that need to be shown on the web app. Administrations and organization
 boards are utilized for the admins to alter and improve the contents within the
 application, mainly for the frontend and backend parts. A lot of different languages are
 utilized to implement such web applications. An example of such an application would be
 Netflix. Depending on what the user wants and searches, the web app returns the precise
 content or some extremely similar items if the exact content can not be found. This
 process requires real-time computation and analysis. This application allows users to
 read, write, refresh and even delete data.

 5.7.1.3 Single Page Web Applications
 These apps do not need any page reloading as it reflects exactly what their title says.
 These websites allow efficient communication between clients and websites with
 minimum discrepancy. Responses from the back end of the website and requirements are
 more agile due to the low quantity of data. The logic implementations are usually done on
 the browser rather than the backend server. The clients can interact with the totality of the
 website characteristics within a single page. However, SEO guidelines are not supported
 for SPA websites due to their Universal URL nature. Many popular social media
 platforms are currently utilizing SPA websites for their quick response times and logic

 42

 implementation on browser qualities. Websites like Google, Twitter, Google Maps, and
 Gmail - are all single-page web applications.

 5.7.1.4 Multi-Page Web Applications
 These applications are more complex and offer many more features. For these websites,
 there is more than one page, and each time a user would like to navigate to another page,
 the entire page has to be reloaded. Whenever a customer browses different website
 features, the data from the back server fills up and reloads the page with new data. So as
 can be expected, the logic implementation of the website takes place on the backend side,
 and the requirements from the client and server are reversed. The user interface gets
 affected by this long process of creating pages on the backend and presenting them to the
 browser for the user. So AJAX is utilized to tackle unexpected segment issues without
 reloading numerous times. Multi-page applications are widely used in the modern world,
 and often they also are supported by both mobile and web browsers if the front-end
 design of the application is made responsive. Some of the more popular languages used
 to implement Multi-Page Applications are HTML, CSS, JavaScript, JQuery, AJAX, etc.
 SEOs are better supported for these web applications since all the pages are optimized for
 keywords. Due to their scalability with page limitations, modern websites, portals,
 marketplaces, stores, and enterprise applications heavily utilize MPA websites. But the
 only constraint for these web apps is that they are complex and difficult to maintain.
 Websites like Amazon, eBay, and Trello are some examples of MPA.

 5.7.1.5 Animated Web Applications
 Closely correlated with modern Flash technology, Animated Web Applications help
 market or showcase content via numerous visual animation effects. Thus, SEO is
 unsuitable for these web apps because keywords are unclear for the web pages and can
 not be read accurately. These web apps largely imply the usage of the creative and design
 aspect of web development; thus, the UI and UX engineers have the freedom of being
 extremely creative and utilize elephants of web design that are not supported by other
 web applications. This helps enrich the user experience because the users are exposed to
 unique designs and catchy effects along with the necessary information that the website is
 initially programmed to convey. CSS3, JavaScript, and SVG are some of the more
 popular tools for implementing such websites. Squadeasy and Miki Mottos are some of
 the best Animated Web Applications. However, few companies rely on these websites to
 communicate with customers because of search engine optimization limitations.

 5.7.1.6 E-Commerce Web Applications
 E-Commerce is a big contributor to the modern-day economy. E-Commerce businesses
 help increase digital foot traffic to consumers as opposed to shopping in physical stores.
 Lately, e-commerce has gained popularity, and thus web applications that are utilized to
 port digital stores onto the web have gotten more important and are being optimized to
 aid in sales. Web applications offer a lot of complex features to support all the
 functionalities of a physical store. These include electronic payment, online transactions,
 customer service capabilities, online browsing of store content, online shopping cart
 option, adding new products or removing old products, and many more. However, with

 43

 all these complex and intricate features come the burden of increased complexities on the
 developer end and maintenance constraints. Thus usually, for these websites, dedicated
 developers are often hired to maintain the security, sustainability, and efficiency of the
 final app. Also, such websites need robust and user-friendly graphical interfaces to
 increase digital food traffic or scale up. As a result, User Interface and User Experience
 engineers are needed to ensure all aspects of an efficient graphics interface are covered.
 Along with the interface for the users, developers must also include an admin interface
 for the website so that the online store employees can add new products. Shopify is one
 of the biggest E-Commerce web apps that is widely utilized.

 5.7.1.7 Portal Web Applications
 These applications offer the peculiar feature of having different categories of items
 available on the home page. Such features include forums, chats, e-mail, search engines,
 browsers, blog posts, the latest content, register/sign-up options, and many more. Since
 these applications have high feature attributes, many enterprise companies often use these
 applications to customize and tailor the experiences of the specific targeted audience.
 Often portal web applications offer different views depending on regular user or admin
 privileges. Admin sometimes also can monitor the activities of the signed-in user to the
 app. It also allows the capability of restricting certain functionalities of the web app
 depending on the user or admin account. Many websites, such as Udemy and Coursera,
 are utilizing the portal web application format to uniquely design the content on their
 website to cater to specific users.

 5.7.1.8 Rich Internet Applications
 These web applications are fundamentally implemented to be integrated better with the
 browsers and aid in resolving the restrictions implied. They utilize client-level plugins,
 which include Silverlight, Shockwave, and Flash. These applications support numerous
 desktop applications functionalities but with the extra addition of improved, more agile,
 and engaging communication systems. Due to these applications relying on the plugins
 and tools that improve efficiency and user engagement, they are better suited to improve
 visual user experience than generic program applications. But complete reliance on such
 plugins and tools brings up constraints of unannounced vulnerabilities and security gaps.
 For instance, any outdated or faulty plugins or tools will result in the websites partially
 being inactive or certain major components/functionalities being unavailable. Websites
 like Google Gears, Adobe Flash, and Microsoft Silverlight utilize Rich Internet
 Applications to improve the visual aspects for the catered users.

 5.7.1.9 Progressive Web Applications
 With similarities in visual aspects of mobile applications, these web applications are one
 of the most advanced forms of web development. With the increase in digital footprint
 from mobile devices, the importance of websites supported by mobile browsers is gaining
 more and more popularity. With Progressive Web Applications, users have the luxury of
 accessing all the necessary data from the web application with vast features and increased
 performance from any mobile browser. Such functionalities allow users to enjoy the
 enhanced mobile web experience and improve service even with slow network

 44

 connections. However, the main objective for implementing such web applications was
 never to increase functionalities or new features within the architecture. Rather this
 particular web form was intended to optimize the agility and adaptability between web
 apps and mobile devices through poor network connections. Some major benefits of such
 applications include cashing, home screen installation, efficient data transmission with
 HTTP, and many more. Many popular websites for renowned companies are
 implemented with Progressive Web Application features. Companies like OLX,
 Starbucks, Forbes, Pinterest, and Spotify are just some of them.

 5.7.1.10 Decided Web Application
 The “smart” aspect of the Smart Parking Project refers to using advanced technologies to
 enhance the current parking experience and solve issues relating to the topic. Thus usage
 of a website to enhance the user experience for the targeted users is crucial to the project
 implementation. The project is planned to have video cameras set to record vehicle
 movements and presence within a certain amount of spaces and utilize machine learning
 algorithms to make aid in parking decisions for the intended users. Thus being able to
 visualize the different metrics, such as open parking spots and available spots, is crucial.
 Showcasing video camera recording in real-time would also aid users in navigating and
 making smart parking decisions. However, other than these features, for Smart Parking,
 no more complex logic implementations or real-time processing would be needed.
 Considering all aspects and the necessary complexities of the project, it can be stated that
 utilizing a Dynamic Web Application to support server-side and user-side real-time
 communications would fit in and support all the major requirements.

 5.7.2 Web Development Stacks
 Web development stacks mainly refer to the collection of different software set up
 together to implement and support the total functionality of websites. Different software
 is usually utilized to support different sides, such as the user, server, and database side of
 the web applications. In this retrospective, the software is stacked to support the website.
 With the raging technological improvements, the web development world has adapted
 many different web stacks for their specific needs and advantages. Selecting a correct
 stack to support the functionalities of the Smart Parking Web Application is a critical
 element of the project.

 5.7.2.1 LAMP Stack
 The LAMP stack is considered the most mature web development. It is one of the first
 open-source technology stacks. LAMP stack is the compilation of Linux, Apache,
 MySQL, and PHP. Each of these technologies has its purpose. MySQL is the data server
 for the stack with the utilization of SQL language. Apache is the HTTP Web Server to
 support the communications done throughout the websites. PHP is the backend side of
 the web stack. Linux is utilized as the operating system for this particular stack. This
 stack provides enormous performance capabilities and flexibilities reflecting the needs
 through customized modifications. It is the industry standard with optimized efficiency
 and peak performance. LAMP stacks also support FrontEnd or the user side of the web
 applications with low-level JavaScript, HTML, and CSS for implementing necessary

 45

 graphics interfaces for the users. Since the operating system can be changed for any tech
 stack, it is easy to change the Linux-based operating system to a Microsoft Windows
 system which would create WAMP, or even a MAC OS-enabled stack which results in a
 MAMP stack.

 5.7.2.2 MEAN Stack
 This stack is one of the newer technology stacks of the modern world. It consists of
 Express.JS, Angular.JS, Node.JS, and MongoDB. Express, Angular, and Node are all
 languages utilizing JavaScript. Thus MERN can be considered through and through
 JavaScript tag. This feature aids in the learning and implementation organization. The
 entire web stack utilizes JavaScript, so the structure is more optimized and simplifies the
 learning curve and usage, aiding in seamless integration within the stack's components.
 Express.JS supports the server-side, back-end portion of the stack. Angular.JS
 implements the front end or user end of the web stack. Node.JS is a runtime environment,
 which could be considered the web application server. MongoDB is a NoSQL database to
 store information from the client and server sides. With the usage of a single language,
 the MEAN stack also provides the ability of code reusability across the platform to
 decrease redundancy. The technologies within the MEAN stack are all open source and
 free, which enables an ample amount of resource sharing for the web developer
 community. JavaScript is gaining immense popularity throughout different industries;
 thus, complete utilization of Javascript across both servers and client-side makes it stay
 with the trend and simple execution for the developers. MEAN stack offers scalability
 and flexibility in cloud hosting, and with the included web server, the web deployment is
 also super simple. Different components within the stack communicate in JSON data
 transmission, which optimizes communication efficiency. So, the MEAN stack allows the
 implementation of agile and immensely efficient apps.

 5.7.2.3 MERN Stack
 MERN stack is extremely similar and shares many of the same technologies as the
 previously discussed MEAN stack. The new addition to the MERN stack is implementing
 the front-end user side of the web application with ReactJS. ReactJS has a lot of benefits
 of its own. With the utilization of the Virtual DOM embedded within, React.JS makes
 any changes made to the technology code - seamless. One of the advanced forms of
 modern JavaScript, JSX, is used within React.JS which provides harmonious component
 support and communication. React allows simultaneous code usage between servers and
 browsers with a powerful built-in library. For a lot of off-the-shelf high-performance web
 applications, the MERN stack is extensively implemented. React.JS requires no
 templates. This allows the reduction of repetitive DOM and HTML elements. The
 isometric nature of React allows it to run on both the user side and the client side of the
 web application. This aids in Search Engine Optimization purposes as pages can be
 created on the server. Thus, using ReactJS, code development is more efficient and faster.
 It is great at supporting applications with low-level complexities.

 46

 5.7.2.4 MEVN Stack
 Very similar to the previous two discussed stacks, the MEVN stack is a combination of
 MongoDB, NodeJS, and ExpressJS. However, instead of the former ReachJS or
 AngularJS, this particular stack utilizes another JavaScript-based front-end framework
 called VueJS. The benefits of VueJS include a rich set of development tools and
 lightweight out-of-the-box functionalities, which also extends to third-party services.
 VueJS represents a framework, whereas ReactJS is a library. VueJS also utilizes HTML
 instead of JSX, which is used by ReactJS. MEVN stack introduces the application of the
 newest technologies out of the other JavaScript stacks like MEAN and MERN. However,
 this also poses a constraint towards the MEVN stack due to the recent development of
 VueJS and not a lot of resources being developed compared to the other front-end
 frameworks.

 5.7.2.5 Python - Django Stack
 Different from the stacks utilized in the discussions above, the Python-Django stack uses
 one of the most popular and fast-growing languages, Python. For the web server, the
 Python-Django stack has Apache for support. MySQL is used as the database for web
 applications. Also, due to the machine learning and data science capabilities of Python
 language, this stack has the potential to take web development to the next stage. Django
 framework is utilized for the server-side support of web applications, which is entirely
 written in Python. JavaScript is utilized for the frontend aspect of the web stack. This
 stack also provides a rich collection of third-party packages to enrich the developing
 experience.

 5.7.2.6 Ruby on Rails Stack
 The dynamic programming language, Ruby, is used on the Ruby on Rails web stack. The
 server-side backend aspect of the web stack utilizes Ruby, which supports default
 structures and database management. Sinatra, Hanami, and Padrino are some of the more
 popular frameworks for web development with the Ruby on Rails stack. Ruby language
 is open-source; thus, a large community of developers is experienced, and rich resources
 are available on the world wide web. A strong infrastructure along with test systems and
 database integration support Ruby on Rails which further enhances the developing
 capabilities utilizing the stack. Ruby on Rails also allows flexibility. One of the biggest
 fortune 500 companies, Shopify, utilizes Ruby on Rails which is also known for handling
 almost 80,000 requests per second. Websites like GitHub and AirBnB implemented their
 website with the Ruby on Rails stack.

 5.7.2.7 Decided Web Stack
 Choosing the correct web stack is realistically the single most important step at the start
 of web development. Out of the many web stacks discussed and many more technologies
 that have not been emphasized, there are many options with their upsides and distinct
 downsides. With the ever-changing flow of technological advancements, web
 applications must correlate and support web stacks that change and keeps up with
 modern-day technologies. This would ensure new documents being produced, advanced
 resources being developed, and bigger communities supporting those technologies being

 47

 formed. However, that does not mean that the older forms of technology are not efficient
 and should not be used. Stacks like LAMP stack and Ruby on Rails - despite being one of
 the earlier web development technologies, to this day are practiced and being updated.
 LAMP stack was developed in 1998, but websites like WordPress, Tumblr, and
 Wikipedia are still built on the LAMP stack. On the other hand, popular websites like
 Hulu, Twitter, Github, and Shopify are still utilizing and supporting Ruby on Rails
 technology. However, the recent technologies and the oncoming technologies like Python
 - Django stack and the MERN, MEAN, and MEVN stacks are being optimized
 religiously due to their popular usage and easy-to-implement capabilities. More tools are
 being generated to support the framework, and rich libraries are introduced to enhance
 the developing experience. With the promising future of accommodating the unlimited
 capabilities of machine learning and enhancing data analysis algorithms, Python-Django
 can revolutionize the web development era. However, with the same language,
 JavaScript, implemented on the Front-End side, Back-End, and server side, stacks like
 MERN, MEAN, and MEVN are making it simple for developers to learn and maintain
 and implement more robust and optimized web applications.

 For the Smart Parking system, a dynamic and visually pleasing web application is needed
 to cater to the targeted audience. The web applications need to support real-time
 capabilities, emphasizing frequent yet fluent communication between the server-side and
 the user end. The time frame and deadline of the project would also contribute to the web
 development planning since learning and implementing various technologies to support
 an efficient web application can pose many challenges. Thus, to eradicate the time
 constraints for the project, choosing a stack that implements similar technologies that are
 easy to implement and have redundancy across platforms between components could be
 one of the possible solutions. MEAN, MERN, or MEVN utilization would make the
 prospect to be implemented in real life. All three of these web stacks implement some
 variant of JavaScript frameworks across the front-end, back-end, and server-side aspects
 of the web application. This allows code re-usage and simplifies the learning curve for
 the developing stage of web applications. However, the MEVN stack has its constraints
 for being a moderately new technology. There are fewer resources for VueJS developed,
 and the community for this open-source language is not yet matured as much as some of
 the other front-end frameworks available. MERN stack is a compilation technology that
 allows code reusability along with the implementation of a really popular ReactJS
 front-end framework. ReactJS uses libraries like MaterialUI to improve user experience
 and web-to-mobile responsiveness. Using the UI libraries ReactJS allows the
 development of rich user interfaces. Not only for web applications but also for future
 implementation of mobile app features, ReactJS also has an extension developed by
 Facebook, which is a front-end framework for mobile devices called React native. The
 utilization of JSX implies the ability to write custom components catering to audiences.
 React also allows code component reusability, which allows the redeployment of digital
 objects. For marketing purposes, React also enhances Search Engine Optimization for
 different keywords across the web application.

 Thus considering the immense benefits of utilizing the MERN stack to deploy a Dynamic
 web application would be the ideal choice for the Smart Parking App. This will lessen the

 48

 learning curve and lighten the workload through code reusability and with different
 library implementations to enrich the User Experience with unique graphical interface
 features.

 5.8 Mobile Application Research
 For our project, a mobile app that shows parking availability was desired. The app can
 inform users of the number of spaces available per garage, level, and area in real time.
 The two leading mobile OS platforms for which a mobile app can be developed are
 Apple's iOS and Google's Android. However, a mobile app was not implemented on the
 final project due to time constraints.

 5.8.1 Mobile Application Types
 There are three major types of mobile apps to choose from Native apps, Web-Based
 Apps, and Hybrid apps.

 5.8.1.1 Native Apps
 These are apps developed for use on a particular operating system, which means the app
 only works for that specific device. The advantages of native apps are highly
 customizable options, fast performance, and access to all the device features and
 functionalities. Among the disadvantages are the need to learn specific languages and
 IDE for their development, and the time it requires to build the app doubles as the same
 app needs to be written on each platform. For example, creating native apps for Androids
 requires Java or Kotlin, and for iOS, languages such as Swift and Objective-C are used.

 5.8.1.2 Web-Based Apps
 Web-based apps are websites made using responsive web design in which the website
 reacts to the user's environment based on platform, screen size, and orientation. One
 advantage of this approach is that the app does not need to be installed onto the mobile
 device because the app is accessed through the already installed web browser. Another
 advantage is that the code is written once. Since the same web app can be accessed from
 either mobile operating system, writing apps for each platform is unnecessary. One of the
 disadvantages is that since web apps require a browser to run, web-based apps are slower
 than native apps because browsers typically do not work at the same speed as native apps.
 Another disadvantage is that all device functionality is not fully supported.

 5.8.1.3 Hybrid Apps
 Hybrid apps are a combination of the two previous types. These apps are cross-platform
 compatible, meaning they can be installed onto iOS and Android, but their functionality
 is similar to native apps. Therefore, these apps do not require a web browser. The
 advantages are that the codebase is written once (and thus takes less time to develop), and
 they can access the phone's features and functionalities. One of the disadvantages of
 hybrid apps is that since it uses web components, everything from buttons, navigations,
 and transitions looks and feels different. Another disadvantage is that hybrid apps do not
 run as fast as native apps because of the introduction of a middle layer that the app must
 go through to translate web functions and elements to the native device.

 49

 5.8.1.4 Mobile App Choice
 After analyzing the pros and cons of each type of mobile application, the team decided to
 go with the Hybrid application for the following reasons. This project's mobile app does
 not require any of the phone's features and functionality beyond the display, touchscreen
 capabilities, and internet access; therefore, the app does not need to be native. Also,
 writing two native apps to support iOS and Android devices would take too much time.
 Although the web-based app allows writing the code once, it does not allow it to be
 installed. Therefore, the hybrid application provides the best of both worlds. It will enable
 writing a single codebase for both platforms and allow the app to be installed on either
 platform (cross-platform). Even though a web app may not perform as well as a native
 app, the team believes a hybrid app will perform great for this project's objectives.

 5.8.2 Cross-Platform (Android/iOS) App Development Framework Options
 A cross-platform development framework is needed for this project, and there are plenty
 of options to choose from, such as React Native, Flutter, Xamarin, Ionic, Cordova
 (formerly PhoneGap), Jquery Mobile, NativeScript, Swiftic, Corona SDK, Appcelerator
 Titanium, and Sencha. Due to the vast number of options, this research will focus on
 these four popular frameworks: Xamarin, React Native, Flutter, and Ionic.

 5.8.2.1 Ionic
 Ionic is an open-source software development kit (SDK) for hybrid mobile app
 development, and it was built on top of Apache Cordova and Angular JS. It was later
 rebuilt as a set of web components to allow developers to choose from different user
 interface components from Angular, React, or Vue JS. Besides being free and
 open-source, one of the main advantages is its extensive choice of user interface (UI) and
 quick prototyping; these ready-made elements speed up the construction of a graphic user
 interface (GUI) [4]. Another advantage is its documentation; with more than five million
 mobile apps built with Ionic, their exhaustive documentation is available on its website
 [5]. In addition, a strong online community of more than five million developers in
 constant activity on the forum makes it easier to find help. One of the disadvantages is
 the absence of hot reloading, which would allow changes to an app to be applied without
 reloading the whole app. Instead, the app refreshes the entire app to make changes active
 [4].

 5.8.2.2 Flutter
 Google created Flutter as an open and free framework to develop native Android and iOS
 applications with a single codebase. Unlike Ionic, which uses HTML, CSS, and
 Javascript, mobile apps in Flutter are written using Dart (Google's programming
 language) [6]. One of the advantages of Flutter is that it does hot reloading, which allows
 for changes to the app to be seen immediately [6]. It also has full customization and fast
 rendering, which permits graphics, video, and text animation without limits. Another
 advantage is that it has an app builder; this tool allows one to write code using building
 blocks that can be mixed and matched to suit any needs [7]. One of the disadvantages is
 that Flutter is still a relatively new framework because it has not been in the market for as
 long as other frameworks; this translates into a lack of some advanced features and a vast

 50

 resource base. Another disadvantage is learning a new programming language, Dart, to
 write mobile apps in Flutter. Since Dart is not a popular language, it could be a
 disadvantage since the online resources are not as extensive as other programming
 languages.

 5.8.2.3 React Native
 Meta Platforms, then Facebook, created React Native as an open and free framework to
 develop Android, Android TV, iOS, macOS, tvOS, Web, and Windows applications.
 React Native applications are written in React, which is coded in Javascript. One of the
 advantages of React Native is its countless ready-made solutions and libraries; this
 enhances the development process for quick prototyping [8]. Another advantage is that
 the developer community and the online support are large, which allows for getting help
 quickly. In addition, the use of Javascript opens up a vast online community that also
 offers support to React Native developers. One of the disadvantages is that it can be hard
 to debug, and developers need knowledge of the native language of each platform [8].
 One more disadvantage is that 90% of the code can be applied to iOS and Android
 platforms; therefore, depending on the native elements used, it may require separate
 optimizations for each platform.

 5.8.2.4 Xamarin
 Owned by Microsoft, Xamarin is a free cross-platform and open-source app platform for
 building Android and iOS apps with .NET and C#. .NET is a developer platform made up
 of tools, programming languages, and libraries for building many different types of
 applications and Xamarin extends the .NET developer platform with more tools and
 libraries [10]. One of the advantages of Xamarin is its single tech stack. Due to its
 compatibility with the .NET framework, .NET is used to develop the app, but it is also
 used to develop its backend server; this advantage could potentially cut development time
 since the same .NET framework is used for both[9]. Another advantage is the
 close-to-native performance of the apps. Since Xamarin apps are compiled for native
 performance, the app can access all the features and functionality of the platform and
 device and platform-specific hardware acceleration. On the other hand, one of the
 disadvantages of Xamarin is that it is not suitable for heavy-graphic apps. If the app
 requires intense user interaction or relies a lot on appearance, then the app will require
 considerably more time to develop as this requires advanced knowledge of iOS and
 Android native technologies.

 5.8.2.5 Cross-Platform App Development Framework Choice
 After analyzing the pros and cons of each development framework, the team decided to
 go with React Native for the following reasons. The main reason is that React Native uses
 ReactJS at its core, and two team members have experience writing web applications in
 ReactJS; this dramatically reduces the learning curve. Although Flutter is more than
 capable of handling the project’s mobile app requirements, learning Dart as a new
 programming language would considerably increase the time to develop the mobile app.
 Xamarin is a great choice, but since none of the team members have worked with C# or
 .NET, additional time would be spent learning the language. Ionic could have been
 chosen; however, to match the team’s decision to use the MERN stack, React Native was

 51

 a clear choice. In addition, since the web application will use the MERN stack, the same
 web server can accommodate the APIs needed to serve the React Native mobile
 application and the Web Application.

 5.9 Web Server Research
 The parking garage system needs a place to store the information it receives from the
 various video cameras throughout the parking garage from which web app and mobile
 app clients can get their data. A database is the best solution to store this type of data, and
 a web server is the best place to host the web app and the mobile app files, which
 facilitates communication with the database.

 Since the MERN stack was selected as the software development technology for this
 parking garage system, as discussed in the web development stack section, what is left to
 discuss is where to host the database and the web server. There are two main options for
 hosting the backend and frontend of the app; it could be hosted in a local server or the
 cloud through a service provider. However, to maintain a cost-efficient solution, choosing
 a cloud service provider would be the best option, financially speaking. A local server
 capable of supporting hundreds of connections from students’ phones could quickly
 escalate to thousands of dollars in upfront costs associated with buying all the parts
 needed to build a server, as opposed to a cloud service provider that offers to host plans
 of less than a hundred dollars per month. In addition, when the web server reaches its
 capacity, a cloud webserver can easily be upgraded with a few clicks.

 As mentioned before, the web app was not implemented in the final prototype; therefore,
 there was no need for a web server.

 5.9.1 PaaS vs. IaaS
 Platform as a service (PaaS) and Infrastructure as a service (IaaS) are two options to
 choose from when selecting a service provider. The infrastructure as a service (Iaas)
 provides access to servers on the cloud; these physical or virtual servers are fully
 managed and maintained by the app developers or by IT staff. Therefore, knowledge of
 server operating systems, installation and maintenance, storage capacity and speeds, and
 CPU speeds maybe be needed when choosing the right plan. For example, among the
 features to choose from are storage devices such as SSD or HDD, amount of RAM such
 as 1GB or 8GB, Linux distribution such as Ubuntu or Fedora, and shared or dedicated
 CPUs. One of the benefits of IaaS is that businesses can purchase resources as needed
 instead of buying hardware upfront [11].

 On the other hand, PaaS provides the necessary software components to deploy an app
 without managing the servers where apps run [11]. The server provider takes care of the
 virtualization of servers, so resources are easily scaled up from the developer’s point of
 view. Therefore, it is an excellent option for developers that do not have server
 knowledge or do not want to spend time managing the servers.

 For the parking garage app, either of these two options would work because, fortunately,
 one of the team members has IT experience and can manage an IaaS plan if chosen as a

 52

 cost-effective solution. In addition, most team members have some Linux installation
 experience in virtual environments, as some of our courses required this knowledge to
 complete a few assignments.

 5.9.2 Web Server and Database Hosting Providers
 Many cloud service providers offer Web server hosting plans; some popular ones include
 Digital Ocean, Heroku, Microsoft Azure, Google Cloud, Amazon web services, and
 MongoDB Atlas. Each service provider is explained in the following sections, and its
 pros and cons are analyzed.

 5.9.2.1 Digital Ocean
 Digital Ocean is a simple and scalable cloud platform for all developer needs. It provides
 services such as infrastructure as a Service (IaaS), Cloud-Native (managed Kubernetes),
 and Platform as a Service (PaaS) for all computing, networking, storage, and database
 needs. In their IaaS plans, Digital Ocean provides one-click virtual machines called
 droplets. A droplet is a virtual server with a Linux-based distribution already installed
 and configured; this is a good option because it reduces the time for the OS installation.
 Their plans include a shared CPU server or a dedicated CPU server. The shared CPU is
 where one physical server contains many virtual servers, each hosting other people’s
 backend and frontend applications; thus, one CPU is shared among many virtual servers.
 The dedicated CPU plan means a physical server is dedicated to hosting only one
 backend/frontend application. The shared CPU plan is their more cost-effective option,
 ranging from $5 per month to $96 per month, while the dedicated CPU cost ranges from
 $60 per month to over $2000 per month. Digital Ocean offers database hosting that
 includes MongoDB (part of the MERN stack) starting at $15 per month, but it also offers
 the option to connect to a MongoDB database hosted somewhere else.

 In their PaaS plans, Digital Ocean offers a basic plan for $5/month and a professional
 plan for $12/month. The basic plan is recommended for prototyping only, and the
 professional plan is for the production stage.

 5.9.2.2 Heroku
 Heroku is a cloud platform as a service (PaaS) supporting several programming
 languages such as Node.js, Ruby, PHP, and more, allowing companies to build, deliver,
 monitor, and scale apps. Apps in Heroku run inside smart containers, called dynos, in a
 fully managed runtime environment; Heroku handles these containers, so everything
 from configuration, orchestration, load balancing, failovers, logging, security, and more,
 is handled by Heroku. Therefore, app developers can entirely focus on developing the
 app frontend and backend. One advantage of Heroku is that it has GitHub integration,
 which means that a repository can be set up to auto-deploy with every push to a branch,
 effectively reducing the deployment time of every new code change. Heroku offers a free
 plan to try Heroku with no commitment; in this plan, the container sleeps after 30
 minutes of inactivity. The Hobby plan for small non-commercial apps costs $7 per month
 and includes an always-on container, a free secure socket layer (SSL), and automated
 certificate management. The standard plans range from $25 to $50 per month, including
 threshold alerting. The Performance plan for high-traffic applications ranges from $250

 53

 to $500 a month, including deploying the app in different regions globally. Although
 Heroku offers database hosting, they do not offer MongoDB hosting; instead, they make
 it easy to connect the app to an existing MongoDB hosted elsewhere.

 5.9.2.3 MongoDB Atlas
 MongoDB Atlas, a database-as-a-service (DBaaS), is a cloud computing service. The
 database is stored in AWS, Microsoft Azure, or Google cloud platform, but Atlas
 provides the management tool in a centralized and convenient dashboard in a web app.
 Users do not have to handle the setup of hardware or software installation; the service
 provider handles everything related to managing the database. One of the advantages of
 MongoDB Atlas is that it allows accessing and manipulating the data programmatically;
 therefore, the data can be edited by the backend server hosted somewhere else. They have
 essentially main plans. Their share plan offers a free option, a $9 per month option, and a
 $25 per month one. Their dedicated plans are charged by the hour and vary depending on
 where the files will be hosted (i.e., AWS, Azure, or GCP), but they range from $0.08 per
 hour to $33.26 per hour.

 5.9.2.4 Microsoft Azure App Services
 Azure app services is a platform-as-a-service product to host web and mobile apps'
 frontend and backend code. It works with .NET, .NET Core, Node.js, Java, Python, or
 PHP programming languages. It offers Azure Cosmos DB API for MongoDB, making it
 easy to leverage Mongo databases by pointing the application to the API for the
 MongoDB account’s connection string. One advantage of using Azure is that it offers
 continuous integration and deployment, where the app is automatically updated and
 redeployed whenever there is a change in the code repository, such as GitHub. Azure App
 Services offers from free to isolated plans (i.e., dedicated servers). The app sits on a
 shared server, with 1GB of storage in the free plan, but it does not support a custom
 domain. The next plan is the Basic; it includes a dedicated server created for development
 and testing. This plan supports custom domains and costs $12.41 to $48.91 per month.
 The production plan is the Standard service plan and goes from $69.35 to $277.40 per
 month.

 5.9.2.5 Google Cloud Platform
 Google offers two options for app deployments. One of them is Cloud Run, a managed
 computing platform to run containers invocable via requests or events, and it supports
 many programming languages such as Go, Python, Java, .Net, Node.js, and more. It is
 serverless, which abstracts away all infrastructure management so that developers can
 focus on the app itself. Cloud Run has a pay-as-you-go where it charges for CPU, about
 $6.75 per month, memory, about $6.75 per month, and request usage, about $0.40 per
 million requests. It must be noted that the first 50 hours of CPU, the first 100 hours of
 memory usage, and the first 2 million requests are always free. In addition, new
 customers get $300 in free credits to spend on Google Cloud during the first 90 days.

 Another option offered by Google is the Google App Engine (GAE), a
 platform-as-a-service product that provides web app developers access to Google’s
 scalable hosting in Google-managed data centers. It is similar to Cloud Run, but it is a bit

 54

 easier to deploy an app in App Engine than in Cloud Run. Cloud run provides more
 options that can easily complicate an app deployment for the inexperienced developer.
 The App Engine pricing includes charges of $0.05 to $0.30 per hour per one container
 instance; there are charges of $0.12 per gigabyte of outgoing network traffic.

 5.9.2.6 Amazon Web Services (AWS)
 AWS is a subsidiary of Amazon that provides on-demand cloud computing platforms. It
 offers PaaS and IaaS solutions suitable for the parking garage system. As part of the IaaS,
 Amazon Elastic Compute Cloud (Amazon EC2) offers virtual servers. Amazon offers
 AWS Elastic Beanstalk for the PaaS, an easy-to-use service for deploying and scaling
 web applications and services developed with Java, .NET, PHP, Node.js, Python, Ruby,
 Go, and Docker on servers such as Apache, Nginx, Passenger, and IIS.

 The Amazon EC2 offers many options, including a web server but not a database. The
 on-demand plan price is computed by the hour or the second; for example, the most basic
 option starts at a $0.052 hourly rate, which translates to $37.44 a month if the server is
 used 24/7. The spot instance plan, which allows the use of spare computing capacity for
 up to 90% off the On-Demand price, was designed for flexible start and end times
 applications. Unfortunately, it will not work for this project since the app must be
 available 24/7. The savings plans, which allow discounts based on a 1 to 3-year
 commitment, will not work for this project because the service will be used for a few
 months rather than a few years. The dedicated plans offer a physical server only for an
 app, which means no other apps are running on the same server (not shared). The pricing
 varies depending on the server’s performance, but it can range from $0.45 to $67.00 per
 hour.

 The AWS Elastic Beanstalk has no additional charge for its usage. The cost is associated
 with the AWS resources needed to store and run the application. For example, the cost of
 Amazon EC2 instances or the cost of S3 buckets for storage used for the app would be
 the only cost for the hosting of the webserver. Therefore, AWS Elastic Beanstalk is a
 simple way to get web applications up and running on AWS.

 AWS services offer one more option: the free tier designed to gain free, hands-on
 experience with the AWS platform, products, and services. It includes 750 hours per
 month of Amazon EC2 for 12 months, among many more perks. The 750 hours is
 equivalent to 31.25 days per month, so an EC2 instance can be left running 24/7 for a
 year before incurring any cost.

 5.9.2.7 Web Server and Database Hosting Provider Summary
 A summary of the cost associated with the analyzed service providers relevant to this
 project is provided in table 14 below.

 55

 Table 14: Web Server and Database hosting plan and Pricing

 Provider Web server hosting
 (Monthly)

 Database
 Hosting
 (Monthly)

 Total cost
 (Monthly)

 DigitalOcean (IaaS) Basic: $5 Next: $10 n/a $5 to $10

 DigitalOcean (PaaS) Basic: $5 Pro: $12 n/a $20 to $27

 DigitalOcean
 Database n/a n/a Basic: $15 $15

 Heroku (PaaS) Basic plan:
 $0 to $7

 Standard:
 $25 to $50 --- $0 - $50

 MongoDB Atlas n/a n/a Shared plan
 $0 to $25 $0 to $25

 Amazon EC2 (IaaS) Free tier: $0 On-Demand:
 $37 to $ 158 n/a $37-$158

 Google Cloud Run
 (PaaS) Free tier: $0

 After free
 tier: starting

 at $15
 n/a $0 - $15

 Microsoft Azure App
 Services (PaaS) Free tier: $0 Standard

 $69 to $277 n/a $0 to $277

 5.9.2.8 Web Server Hosting Provider Selection
 After a team discussion about all the analyzed providers, the team arrived at the
 following conclusion. Microsoft Azure App Services, Google Cloud Platform, and
 Amazon Web Services seem somewhat more complicated to deploy apps. Due to their
 excellent scalability and vast additional options would be great for app deployment that
 requires a more robust solution that can be spread out in multiple regions and guarantee
 99.999% uptime reliability. Although all three options offer free tiers, their pricing seems
 more complicated. In addition, none of the team members have experience deploying or
 using any of the three services; this can increase the learning curve for deploying the web
 and mobile app. Digital Ocean seems to be a great option; their one-click deployment of
 virtual servers with the Linux-based OS already installed makes app deployment simple.
 In addition, one of the team members has previous experience deploying this kind of
 virtual server using Digital Ocean droplets.

 On the other hand, Heroku provides an excellent, easy-to-use app deployment that
 includes the automatic update and redeployment of the app with every push to the app’s
 code repository. Also, the free tier or the $7 per month cost makes it straightforward.
 Some team members also have experience using Heroku in previous university projects,
 which reduces the learning curve time. For these reasons, the team decided to use the
 Heroku platform to host the frontend and backend of the parking app and MongoDB
 Atlas as the database hosting provider. However, at the end of the project, the web app

 56

 feature of the parking system was not implemented and the selection above was not
 disregarded.

 6.0 Related Standards
 Standards are documented to provide consistency and compatibility for products and
 efficient production processes as well as for safety for consumers. Such standards act as
 building ground or base guidelines for product development. But with these advantages,
 standards can also limit development options. These standards could be implemented by
 the government or any other companies that produce the initial products. Following
 certain standards often are mandatory, and there are also soft standards that are optional.
 However, considering all the standards in the development process can ensure safety in
 the developmental process.

 6.1 OSHA Standards
 Occupational Safety and Health Administration is responsible for creating workplace
 standards for development safety. They document procedures for workplace safety, from
 construction industries to electrical regulations. In the smart parking project, there would
 be advanced work in the mounting and installation process and electrical work for the
 PCB boards and the main control unit. Following the OSHA standards would ensure
 safety and decrease the risk of development accidents. Some of the instructions are:

 ● Inspect the electrical equipment before use and locate equipment that is not in the
 most optimum condition.

 ● Make sure all the electrical equipment is connected with a ground wire before
 being used.

 ● Avoid wet areas and keep the electrical equipment from any liquid spill.
 ● All the exposed metal parts need to be grounded before operation.

 Exposure to current flows directly could have mild to severe reactions while in contact.
 This depends on the duration of contact and the electrical flow. Electric flows up to 5
 milliamps can have a faint reaction in the human body. Up to 30 milliamps of electrical
 flow contact can cause painful shock in the human body. Coming directly in contact with
 up to 150 milliamps of electricity can cause severe pain and sometimes, depending on the
 contract duration, can also cause respiratory arrest. From 1 amp to 4.5amps current can
 cause the heart to cease and serious nerve damage. Electric flows of more than ten amps
 can cause cardiac arrest and, in the worst cases, death.

 Exposure to direct current flow can cause severe consequences. Thus following the
 standards of OSHA is crucial for the smart park project. Working with the PCB or the
 control unit would make the team come in contact with metal - electricity-driven devices.
 So following OSHA standards would allow the creation of safety barriers and working
 habits during the development process of the system. While handling or working with
 high current flows, following these standards can prevent any possibilities of major
 accidents during the senior design one and two durations. It is also advised by the authors

 57

 of the standards that while working with equipment accessing high voltage of current
 flows, to work in groups. This would enable quick access to help in case of emergencies.
 Make sure the ground connections for the electrical devices are steady through the end of
 the connection. This would help ensure the ground connection to avoid short-circuit
 incidents.

 6.2 Data Communication Standards
 IEEE standards for data transmission and communication can be used as a base guideline
 for the smart park project while establishing a communication network between the local
 server and the cameras, and the web application. IEEE 802.11 standards establish
 communication standards for WLAN architecture and specifications.

 In [21], the IEEE documentation can be found, and the depiction of the standard max data
 transmission rate is added in the figure below,

 Table 15: Data rate based on IEEE 802.11

 This standard documentation 2 Mbps speed with 2.4GHz ISM bands. As a replacement
 for a wired network, this implementation could be the best alternative. When
 implemented along with TCP/IP, this network system works extremely well in the
 mid-range with the most efficient and optimized transmission speed.

 6.2.1 Ethernet Standards
 For computer systems to communicate over a network, they follow a conceptual model
 known as the Open Systems Interconnection (OSI). The OSI model outlines seven
 different layers in the connection between two computer systems. These layers are
 physical, data link, network, transport, session, presentation, and application.

 The ethernet connection standards addressed by IEEE’s 802.3 documentation define how
 wired ethernet pertains to two of these layers the physical layer and the data link layer's
 media access control (MAC) of wired Ethernet. The physical layer specifies electrical
 signals, signaling speeds, media and connector types, and network topologies. This layer
 also implements the ethernet physical layer portion of data transmission speeds, including
 1000BASE-T (1000 Mbps), 100BASE-T (100 Mbps), and 10BASE-T (10 Mbps). The
 data link layer specifies how communications occur over the media and the frame
 structure of messages transmitted and received. In other words, this layer dictates how the

 58

 bits come off the wire, and the arrangement that they will have such data can be extracted
 from the bitstream. In ethernet applications, this is called media access control.

 The connection between ethernet components and a media access controller can be
 accomplished through the media-independent interface (MII). The MII is standardized by
 IEEE’s 802.3u and allows for different types of ethernet PHYs to be connected to any
 MAC. There are many variations of the MII, including the Reduced MII, Gigabit MII,
 Reduced Gigabit MII, and the Ten Gigabit MII; however, we will be using the reduced
 MII as this is the only interface supported by our MAC block on our MCU. The signals
 used to accomplish this interface are detailed in section 8.6. In the table added (table 16),
 the different standards for ethernet wires have been pointed out for convenience.

 All Ethernet cables use the same standardized RJ45 connectors; however, the wiring
 configuration inside the cable can differ from cable to cable. There are two common
 standards for ethernet wiring called T568A and T56B, as shown in Table 16. There are
 four pairs of wires in each standard, commonly referred to as twisted pairs. These
 standards are similar, as the only difference between them is the green and orange pin
 assignments are swapped. With this said, it does not matter which of these is used in our
 system as long as the wiring standard is the same on both ends of the cable.

 Table 16: Ethernet Wiring Standards

 T568A Wiring T568B Wiring

 Pin Pair Wire Color Pair Wire Color

 1 3 1 White/Green 2 1 White/ Orange

 2 3 2 Green 2 2 Orange

 3 2 1 White/Orange 3 1 White/ Green

 4 1 2 Blue 1 2 Blue

 5 1 1 White/Blue 1 1 White/ Blue

 6 2 2 Orange 3 2 Green

 7 4 1 White/Brown 4 1 White/ Brown

 8 4 2 Brown 4 2 Brown

 The standard that defines how a single cable can provide both data and electric power is
 known as IEEE 802.3af. Any port designed for Power over Ethernet applications should
 provide up to 15.4 W of DC power (minimum 44 V DC and 350 mA). Three techniques
 are used to accomplish this, as shown in Figure 14. The first set of blocks in the figure is
 known as Mode A, and this mode transports power on the same wires that are

 59

 transporting data. This is made possible by applying a common voltage to each pair.
 Since the twisted-pair ethernet wires use different signaling, applying this voltage does
 not interfere with data transmission. Using this method only allows for 10BASE-T and
 100BASE-T speeds; however, this will not be an issue for our system.

 The second set of blocks is known as Mode B, and this mode uses the extra two twisted
 pairs to transport power, while the first two pairs are only responsible for data. This is
 effective as two twisted pairs can be treated simply as V+ and V-. The final set of blocks
 is known as Mode 4PPoE, and this mode uses all four twisted pairs to transport power
 and data. This mode is not commonly used as it only applies to high-power applications.
 A summary of the PoE modes is shown in Figure 14.

 Figure 14: PoE Connection Standards

 6.3 Programming Standards
 Despite not affecting the actual functionality of the code or the functionality of the
 system in general, following programming standards can help developers stay organized.
 The standards include naming standards, bracing standards, formatting, and syntax
 standards. These standards help the codebase stay organized across platforms. This also
 improves the readability of the code base, which helps anyone outside the developer team

 60

 to glance at the code base and understand the business logic of the code. The
 object-oriented implementation of the code is also enhanced as these standards bring
 portability to the codebase. The maintainability is optimized; thus, it helps the developers
 with the debugging process. However, an even bigger advantage is adding new features
 or advancements to the overall system; following a standard code system can make the
 integration process extremely smooth.

 6.3.1 Programming Naming Standards
 Naming standard is one of the biggest advantages of the programming standard process.
 These processes include camel case methodologies. There are three types, and they are
 the initial uppercase, the lowercase, and the consistent case. These naming conditions
 simplify the naming process across the code base and define the purpose of numerous
 variables defined. To understand certain parts of the code, consistent variable naming
 allows developers to keep track of multiple usages. Some examples of these naming
 standards are listed below,

 Consistent Case - CONSISTENT_CASE
 Upper Camel Case - UpperCamelCase
 Lower Camel Case - lowerCamelcase

 6.3.2 Programming Syntax Standards
 Syntax standards include consistency in white spaces, comments, line length, etc. This
 allows for improved readability and reusability in the code. A line wort of space between
 different modules within the code would increase the portability of the codebase.
 Between multiple business logic codes, vertical single-line spaces can help developers
 distinguish different parts of the code easily.

 Comments are one of the main indicators to communicate the purpose of the code to
 different developers or even to skim through the code base with speed. Commented each
 code block would increase general context understanding for the readers who are not part
 of the code developing team. However, following a specific standard while commenting
 is important. The standards could include the usage of a single “//” character at the end.
 Also, starting each code block with a single line comment of 50 characters max can allow
 code blocks to be structured. Avoiding excessive white spaces while commenting should
 also be included within the standards.

 Having a set max length along the codebase allows the integration of smooth structure
 across. This standard allows no logic to exceed the width of normal devices. Developers
 will have efficiency while browsing through or debugging code with these
 implementations. This standard makes it possible by wrapping the line after a set amount
 of characters. A generalized example would be wrapping a line of code to another line
 after it exceeds a maximum of 100 character count.

 61

 6.3.3 Programming Indentation and Bracing Standards
 Indentations and bracings are two of the most vital components of keeping the codebase
 neat and organized. Braces are used frequently in code statements for logic
 implementations. However, even though, in some cases, braces are mandatory, some “if”
 statements do not require braces. However, as standards, for any type of business logic or
 driver-level logic, braces coving code blocks should be used. It helps developers keep
 track of the start and end of existing code blocks.

 Indentation is another important concept for organizational purposes. After an
 if-statement or any loops within them, the code needs to be indented by one tab worth of
 space. Every time there are embedded loops within, the spacing for indentation should be
 consistent and increase by multiples of 1 depending on the level of depth within the logic.
 Without the consistent standard implementation of indentation, the code blocks would
 become difficult to read.

 6.4 Ingress Protection Code (IP Rating)
 The Ingress Protection or IP rating code classifies the protection provided by an
 enclosure for electrical equipment against intrusion, dust, contact, and water [27]. IP
 ratings are defined in the International Electrotechnical Commission (IEC) number 60529
 (also published by the European Union by CENELEC as EN60529) [27]. The two
 numbers that come after IP have two meanings (e.g., IP65). The first digit refers to the
 solid particle intrusion protection. This number is required and indicates the level of
 protection of persons against access to hazardous parts inside the enclosure and
 protection of the equipment inside the enclosure against the ingress of solid foreign
 objects. The meaning of the different options as the first digit is summarized in Table #.
 The second digit is optional and indicates the level of protection against water ingress,
 and each level is outlined in Table 17 and 18. The IP rating for the parking system was
 chosen to be at least IP65 which provides dust-tight protection and protection against
 water jets.

 Table 17: IP Code First Digit Meaning

 Level Effective Against

 X X means no data available

 0 No protection

 1 Large surface of the body

 2 Fingers or similar objects

 3 Tools, thick wires, etc.

 4 Most wires, screws, large ants, etc.

 5 Dust protected

 6 Dust-tight

 62

 Table 18: IP Code Second Digit Meaning.

 Level Effective Against

 X X means no data available

 0 No protection

 1 Vertically dripping water

 2 Dripping water when the enclosure is tilted 15 degrees

 3 Spraying water

 4 Splashing of water from any direction

 5 Water jets (12.5 liters/min at 4.4 psi)

 6 Powerful water jets (100 liters/min at 15 psi)

 6K Powerful water jets at higher pressure (75 liter/min at 150 psi

 7 Immersion (up to a meter)

 8 Immersion (more than a meter)

 9k Powerful high-temperature water jets

 6.5 Voltage and Power testing Standards
 Safety is one of the major components to consider while working with electrical tools
 with higher voltage and power. Most corporate companies who work with PCB designs
 and microcontroller manipulation often have their own set of rules for a safe environment
 for working with electronics. In [31], the IEEE Std 510-1983 has focused on the guidance
 for working in a safe environment while working with electrical equipment. The paper
 then goes in-depth with the definitions and usages of rubber protective tools, safe work
 practices while dealing with electrical tools, field tests, special concerns working with
 current flow, safe electrical equipment, and many more.

 As far as protective equipment goes, insulated rubber equipment can provide a lot of core
 safety while the machine is energized. During the process of switching equipment, one
 must use insulated equipment. Because the machines may still be energized at the time of
 the switch. Also, while the equipment is being turned off or de-energizing, it should be
 considered energized, and caution must be taken. National Consensus Standards NCS is
 mainly responsible for employing and publishing safety protocols for Rubber - Protective
 types of equipment. All the rubber-insulated equipment must be National Consensus

 63

 Standards approved. Such equipment could include rubber-insulating gloves, matting,
 blankets, hoods, line hoses, and sleeves.

 During laboratory or research implementation work - multiple safety protocols are
 mentioned to be followed. Having permanent and temporary test areas, interlock or
 fail-safe signaling systems, grounding protocols, and power supply safety are just some
 of them. The main or permanent test area should be enclosed with some sort of barrier
 with doors or some type of blocker to restrict public access due to potential power
 hazards. At the same time, caution boards must be utilized to warn individuals working
 closely. As far as temporary testing areas go, they do not need permanent barriers.
 However, there should be some sort of temporary separators like portable fences. Safety
 tapes easily visible and at least waist high should enclose the parameter. Only once the
 equipment is turned off and fully de-energized can the tape be removed for others to enter
 the area.

 Access to a loudspeaker will aid in communicating with many individuals
 simultaneously. For fail-safe purposes, some sort of signal or interlock system can also be
 put in place. Any type of audible sound or gesture can help enhance the safety net. For
 the main and temporary test areas, a systematic procedure should be put in place. This
 will ensure that the equipment is not energized while someone else is nearby. In critical
 cases, companies have been known to select observers to ensure the test areas are safe for
 other individuals to engage in.

 With the implementation of workspace and workbench safety comes the concept of work
 equipment safety. Without the equipment thoroughly checked for safety measures, any
 type of workspace area precaution would be invalid. These equipment safety measures
 can include special and basic grounding practices, safety in power supplies, being
 cautious of any physical hazards, and many more. Before working on any test object, it
 should be a mandatory requirement to ground any type of high-voltage circuit. This can
 save any type of personnel hazards. For extremely high-voltage equipment, operators
 usually attach a ground to the high-voltage terminal using an insulating material. All the
 exposed intermediate terminals with running electricity should be grounded. Also,
 grounding instruments should be checked for efficiency and safety, and this procedure
 should have more precedence over proper signal grounding.

 For the direct voltage power supply, all the individuals working nearby need to be
 notified as there could be scenarios of random discharge of electricity in underground
 metallic objects and capacitive elements. The equipment nearby also should be grounded
 and short-circuited before initializing the direct voltage source. Also, after usage, the
 equipment should be allowed some time for the test voltage to decay to a low enough
 value so that other individuals can safely access the area. With these, caution should also
 be followed for airborne porcelain or any other material in case of equipment failure.
 Having any sort of open container should also be prohibited as it may cause physical
 injuries in case of spillage.

 64

 The Smart Parking system was designed to have the PCB set to support the control unit
 and LED signs. Thus various electrical equipment was needed for the proper
 implementation of the system. To ensure a safe environment during the implementation
 and the test procedure, the safety precautions mentioned in IEEE’s Std 510-1983
 standard can indeed provide a multitude of guidelines. Following these strategies, safe
 execution of the electrical component testing, as well as the application of the Smart
 Parking System, was achieved.

 6.6 NEMA Ratings for Enclosure Standards
 National Electrical Manufacturer Association (NEMA) signifies and enforces protocols
 on the environment where the electrical component resides (fixed enclosures) and their
 stability. The association standardizes the quality of the fixed enclosures used for storing
 electrical components and tests the ability to withstand certain environmental calamities.
 NEMA not only helps the end-users to achieve protection of a safety net to keep the
 electrical components enclosed, but they also ensure the economic aspects of the
 enclosing are subpar. They aid in improving communication safety and economics
 between the end user(purchaser) and the seller (manufacturer).

 NEMA standardizes and supplies an ample collection of enclosures. IP Enclosures, ICEx
 Enclosures, ATEX Enclosures, UL Listed Enclosures, C - UL Enclosures, and many
 more. The enclosures are all powder-coated carbon steel, 304 stainless steel, 316 stainless
 steel, or the aluminum enclosures of NEMA are all supported and verified by the UL or
 IP ratings. There is a selection of NEMA standards that ensure all the necessary
 capabilities for the safety of the enclosed electrical components.

 NEMA Type 1 standard ensures protection of the electrical components against solid
 falling dirt. The Type 2 standard enhances the safety of minor water splashing and
 dripping as well. Type 3 of the standard protects the enclosures from windblown dirt,
 rain, and snow. This standard specifies the safety features for the components even
 against the external formation of ice. The Type 3X standard allows standardizing the
 enclosing equipment to be sturdy enough to fight against corrosion and stay undamaged
 by any external formation of ice. Standard Type 4 enforces stronger safety nets by adding
 security to the enclosure products to keep the electrical components operable even against
 external hose-directed water at a strong force. Type 4X improves the Type 4 standard
 with the capability of working against corrosion. Type 5 standard allows protection
 against more fine-grained objects that may affect the components. Such objects include
 dust, lint, fibers, and other flying debris. Type 6 standard states that the enclosures must
 provide safety of the components from external submersion for a limited time at a limited
 depth. In the Type 6P standard, this safety net gets improved with safety against
 prolonged external submersion of the enclosure.

 NEMA Type 7 and the later standards also focus on safety outside and inside the
 enclosures. Standard Type 7 states that the enclosures must contain any internal
 explosions without causing any external hazards. Type 8 of the standard is stated to
 protect the components by preventing any possibilities of combustion through the use of
 oil-immersed equipment. Type 9 standards prevent the possibility of combustion through

 65

 airborne combustible dust. Type 12 standards and the Type 12K standards are specified to
 provide the safety features mentioned above, however, with the additional emphasis on
 being constructed without a knockout. Type 13, the latest standard of NEMA, is
 introduced to add an extra layer of protection for electrical components. The standard
 protects against dirt, circulating dust, and any airborne particles like dust, lint, and fiber.
 As well as water dripping, splashing, and spraying. However, it adds a layer of security
 by adding security against oil and non-corrosive coolants as well.

 NEMA standards provide safety measures and standards to shield electrical components
 and systems from any environmental (external) calamities, as well as offer protection
 from external hazards from internal combustion and explosion. The Smart Park system
 has multiple crucial electrical components, such as the POE cameras, PCB boards, and
 the Control Unit. These components are a vital part, in fact, the heart and soul of the
 system. Thus protective measures must be taken to ensure the safety of these
 components. Following the NEMA guidelines and standards can allow the developers to
 achieve safety and maintenance for the electrical components.

 6.7 CPSC Standards
 Consumer Product and Safety Commission is a government agency that ensures safety in
 product manufacturing. The commission is responsible for issuing safety standards for all
 merchandising products. From children's safety for walkers and cribs to safety standards
 for writing instruments and other materials - all are standardized by this corporation.
 These standards do not specifically enhance safety in the workspace or the workbench.
 However, these government-regulated standards act as primary guidelines to help
 consumers with the safe handling of all the necessary products.

 Poison Prevention Packaging Act enacts upon a set of standards and regulations that tread
 closely with safety in packaging for the end users (buyers) from different materials.
 While product parts for any project are delivered at home, the packaging materials must
 be safely maneuverable. Some health constraints may come from the materials of the
 packaging substances. The standard paper also focuses on the safety of children from the
 packaging materials. With an emphasis on child-resistant packaging, this standard
 ensures that any of the packaging materials are manufactured, keeping consideration of
 physical hazards. Ensuring all the components of the electrical system are CPSC-rated is
 an important step to ensure safety in product safety and packaging. This way, the
 developers can safely handle the delivered packages at home, and even consumers can
 get a sense of security while unboxing and utilizing the devices. Batteries are one of the
 more common components that the paper emphasizes.

 CPSC also implies electronic products being shipped packages approved by its 1700.15
 section, which standardizes poison prevention packaging standards. Since in batteries,
 low-viscosity hydrocarbons can be found, they must abide by the 1700.15 a and b
 packaging section regulation to protect the consumers from any type of physical hazard
 during or after the delivery process. The section also mentions the packaging going
 through Younger - Adult tests and Senior - Adult tests for scoping purposes. In the
 Younger-Adult test, the packaging is tested for child resistance with at least 80 percent

 66

 effectiveness. Whereas in the Senior-Adult testing, the packaging goes through easy
 opening methods with 90 percent senior adult panel test.

 For Smart Park System, all the parts were ordered online, and thus, making sure that the
 products, as well as the parts, were CSCPSC PC rated was crucial. Since the products
 were delivered directly at home, the packaging safety measures were monitored closely
 for the safety of family members and nearby individuals. The CPSC regulations can
 provide enough context in safety for product and packaging safety.

 6.8 Soldering Standards
 Joint Industry Standard (J-STD-001) is the current state-of-the-art industrial specification
 for the grouped assembly of electronics and electrical product classes. Institute of Printed
 Circuits regulates the usage of J-STD-001 standards for the soldering process of
 manufacturing PCBs. There are a lot of training programs to instantiate the J-STD-001
 soldering and manufacturing process. Released in 1992, the J-STD-001 A version was the
 pioneer of global soldering regulation, and now the latest standard document is at
 J-STD-001 H. This standard initializes and defines different materials and production
 processes of soldering for stability, reliability, and quality in solder joints and assembly.
 The standard initializes material requirements, soldering requirements, component
 placing guidelines, reword conditions, assembly inspection, connector details, and many
 more.

 The general provisions of soldering of J-STD-001 are the first steps towards a proper
 execution of the soldering process. To prevent contamination of materials and surfaces,
 J-STD-001 emphasizes the cleanliness of the workbench and the tools. These inspections
 for cleanliness need to be done even before the conformal coating and stacking
 applications. It also specifies abiding by the manufacturer’s rules for the environmental
 heating or cooling rates. The stacked and multi-layer chip capacitors are treated as
 thermal shock-sensitive. This allows protection against thermal excursions. The soldiers
 also must wet the tinned areas of the wire. This aids in the strands of the wire not being
 damaged. It also emphasizes the defect during the soldering process and differentiates the
 acceptable mistakes from those that must go through a rework process.

 The proper welding demonstration is shown in Figure 15 [32]. Visually noticing the
 soldering processes can often aid in determining the severity of the rework needed for
 any soldering job. A snapshot of the article portrait can be found below,

 67

 Figure 15: Acceptable vs. Rework Needed Soldering Process.

 In the standards, there have been many mentions of process requirements that aid in
 space addendum applications. One of them is the prevention of corrosion. User-approved
 red plague plan is kept in consideration for silver-coated copper conductors. This aids in
 lessening the growth of cupric oxide and latent damage due to various environmental
 conditions. The main constituents of the soldering process are solder paste, cleaning
 media, soldering system, flux, etc. When these or any of these are changed, proper tests
 should be run for validation, and the changes should be documented in a changelog.
 Sn60Pb40, Sn62Pb36Ag2, Sn63Pb37, or Sn96.3Ag3.7 are different types of soldering
 and are considered ideal per standard. Making sure to choose the correct alloy with good
 service life, performance and reliability are important. Then the Flux considerations also
 emphasized these sets of standards and requirements. RO (rosin) and RE (resin) are two
 of the J-STD-001ES flux categories. These also have activity stats of L0 and L1. The
 compatibility of these different Fluxes and their activation level must be compatible with
 the process and thus need to be tested. This goes hand in hand with Solder Paste Testing
 to check the paste spreads. At the same time, solder balls caused by oxidation should also
 be checked.

 While considering chemical strippers, tests should be run to check for degradation or
 damage. Chemical strippers are flux removers to clean up excess flux after the soldering
 process. For thermal protection, heat sinks also should be utilized. Soldering or
 reworking during the soldering process, the components are at risk of heat and thermal
 shocks. Heat sinks or thermal shunts give an extra layer of protection for the electrical
 components. The components also should be considered to have a higher thermal
 threshold to hold up against thermal shocks and excessive heat during the soldering
 process. During PTH soldering connections, the solder must fill up the PTH. This allows
 the top and bottom barrels, better leads, and wetting of lands. The leads could be Flat
 Leads, Coined Leads, or round Leads. Figure 16 shows a comparison between what is
 acceptable and not acceptable soldering

 68

 Figure 16: Acceptable vs. Not Acceptable Part Mount

 In Figure 16, the different mounting processes and standard mountain procedures can be
 witnessed. While mounting, there should be enough space between different components
 for cleaning. An exposed base metal must not prevent a solder connection from forming.
 Inhibition of formations of the solder joints with OSP must not be permitted. Wire ends
 and lead ends can not exceed the terminal by more than one lead worth of diameter.
 Leads should be formed following the system design even before assembly because
 reworking leads is not recommended. Just bending angles and minor lead adjustments
 can be acceptable at best. Lead seals, welds, or connections inside components, must not
 be interfered with or damaged by lead forming procedures.

 For cleaning, there are also mentions of ultrasonic cleaning, and emphasis has been put
 on particulate assembly mattes being cleaned. Transmitting high-frequency sound waves
 through the liquid enables the Ultrasonic cleaning process. In the scenario where nothing
 but terminals or connectors are present on the bare boards - this is used. Caution must be
 abided, as ultrasonic cleaning should only be used if the manufacturer's documentation
 specifies that the cleaning would not affect or interfere with the electrical performance of
 the system assembly. Debris, solder splash, wire clips, and solder balls should be cleaned
 from the particulate matter assemblies.

 The Smart Parking System incorporates a PCB design to support the LED and Control
 Unit Communications. To customize the connection on the PCB board and to enable
 ethernet communication, soldering was done between different components. The
 universal standard of soldering, J-STD-001, guided the soldering process of smart
 parking systems. It offers recommendations to follow the optimum environment built
 with the correct materials and placements.

 69

 7.0 Design Constraints
 The conditions that limit the choices that can be made during the design process of a
 system are called constraints. Constraints force developers to consider edge cases of
 failure and ensure a safe and reliable execution of the desired system. Constraints include
 the economic aspects of the project, environmental effects, safety standards, ethical
 considerations, and time limitations, just to name a few. While developing the design of
 our smart parking system, there were a variety of constraints that we needed to consider
 and adhere to. This section will discuss those constraints and address how they will
 impact the design of our system.

 7.1 Economic Constraints
 One of the biggest constraints we must adhere to during the design process of our system
 is the total cost of all the components. Since our project was not sponsored by an external
 company and we are instead splitting the total cost of our system evenly between all
 group members, we are limited in some of the design decisions we can make. To
 counteract this, we cut costs by using components that we already had on our hands, such
 as ethernet cables. Additionally, we did extensive research to ensure that the components
 we used were of high quality but affordable. Lastly, before we purchased any
 components, we talked to all the suppliers to check if there was any student discount
 available.

 It is also important to mention that this constraint explains why we did not design a
 parking management system for an entire garage. Every garage on UCF’s campus has
 over 1000 spots that could be monitored, and we do not have the finances to design a
 system at that scale. Instead, we will be designing a system that is just a proof of concept
 and can be scaled to fit the needs of an entire garage. The final budget for our project can
 be seen in section 12.

 7.2 Environmental Constraints
 The parking garages at UCF are exposed to all the elements that Florida’s weather
 presents; we needed to be sure that the electrical components in our project were
 protected from these elements. For this reason, we chose to use at least an IP65-rated
 enclosure for all of the electrical components in our project. This ensured that they were
 protected from any moisture and dust that could be present in the air. Additionally, with
 the high temperatures that Florida experiences during the summertime, we needed to
 make sure we were picking components with an appropriate ambient temperature rating.

 Another constraint that needed to be considered related to the environment in which our
 smart parking system was going to function had to do with the garage itself. Each level in
 the garage except for the top level had a ceiling that could present quite a few issues. The
 first of these issues was the maximum height our camera could be placed. Ideally, we
 wanted to place our camera at a high enough level such that the best view, but the ceiling
 hindered us from doing this. The second issue was the potential lighting issue. Since there
 were many shaded areas throughout the lower levels of the garage, we feared that it

 70

 would have a negative impact on the detection of vehicles. However, after preliminary
 camera tests, the lighting conditions and the ceiling height were not an issue at all.

 7.3 Social Constraints
 One of the major constraints that could have affected the design of our system was social
 constraints. The fact that people often walk through the parking garage or use their car to
 take up multiple spots instead of just one, could create some issues with the reliability
 and accuracy of our system. The students and faculty at UCF will likely not have the
 smart parking system in mind when they are navigating the garage, and we needed to
 design our system in a way that responds accordingly. For example, we needed to place
 the LED sign in a location where the view of it had no chance of being obstructed by the
 way someone decided to park their car. Additionally, we needed to design the computer
 vision system in a way that it would not mistakenly count people walking by as cars. We
 also needed to think of the ideal camera placement to deter from being tampered with.

 7.4 Political Constraints
 This constraint did not have an impact on the design of our system since we were not
 designing our system for government use.

 7.5 Ethical Constraints
 With the goal of designing and building a successful smart parking system, ethical
 constraints are something that we had to keep in mind. IEEE defines its code of ethics in
 [19] and emphasizes the importance of their technologies having a positive impact on the
 quality of life, accepting a personal obligation to their profession, their members, and the
 communities they serve, and committing themselves to the highest ethical and
 professional conduct. Therefore, this code of ethics served as a good set of morals for
 senior designs one and two. After reading IEEE’s code of ethics, as a team, we
 understood that we must do the following:

 ● Uphold the highest standards of integrity, responsible behavior, and ethical
 conduct in our activities.

 ● Treat all group members fairly and with respect, not engage in harassment or
 discrimination, and avoid injuring others.

 ● Strive to ensure this code is upheld by all group members.

 7.6 Health and Safety Constraints
 For our project to be considered successful, it had to operate without compromising the
 health or safety of students and faculty navigating garages. We used tripods to lift our
 camera to its required height during our testing and presentation, however, in a real
 implementation of our system, the cameras and LED signs would be mounted on a
 ceiling or wall. The vibrations that go through the garage while people are driving
 through them could loosen the screws used to mount the cameras and LED signs. This
 creates a risk of one of these components possibly falling onto a car or person, which

 71

 could potentially cause damage or injury. For this reason, if this system were to be
 implemented on a larger scale, we suggest that the mounts for all of the cameras and LED
 signs be checked routinely.

 With the fact that we used a camera embedded with computer vision capability and data
 would be transferred through a LAN within the garage, privacy is another constraint
 relating to safety that must be considered. Using computer vision gives the programmer
 many capabilities that could potentially be considered an invasion of privacy against
 people navigating the garage; therefore, our group pledged that we will not use these
 cameras for any purpose other than keeping track of open parking spots in the garage.

 7.7 Manufacturability Constraints
 One of the major constraints that could affect the design of our system in a variety of
 ways is manufacturability constraints. When we are picking components to be used in our
 system, we always needed to be aware of if that part was in stock or not. We also needed
 to be wary of if a component to be used in our design was only sold in bulk quantities or
 if we could purchase just one. Additionally, we needed to check how long it was going to
 take us to receive any component after purchasing them.

 This constraint was major consideration throughout our design process as it could have
 had a negative impact on other constraints, including our time constraints and economic
 constraints. If we did not verify that a company is trustworthy before deciding to
 purchase a component from them, we could have run the risk of not receiving that
 component by the promised time or not receiving it at all. This could have caused both a
 waste of time and money which could have been detrimental to the final design of our
 project. To counteract this, we started ordering components towards the end of senior
 design one and over the summer such that they were already on hand at the start of senior
 design two. After components were ordered, we created a table listing each of them with
 the expected delivery times to track them easily.

 7.8 Sustainability Constraints
 We wanted to design a reliable system able to function for 5+ years before needing any
 maintenance requirements; therefore, we needed to design our system in a way such that
 this was possible. To do this, we needed to consider the environment that our components
 were going to be exposed to and be aware of the impacts it could have on our system.

 One of the ways we accomplished a reliable system was to work with PoE connections
 throughout our design rather than wireless connections. This rode our system of batteries
 which would have needed to be replaced on a routine basis. In a clean environment with
 no exposure to elements, ethernet cables should last for at least 20 years. Since our
 system was going to be functioning in an outdoor environment, we expected they should
 last for about 5-10 years before needing to be replaced.

 In addition to working with PoE connections, we also needed to pay attention to the
 operating temperature of the components we chose. Florida can experience some very hot

 72

 weather, upwards of 90 degrees Fahrenheit, and we needed to be sure that our
 components were rated to handle an ambient temperature in this range and would not
 malfunction. We also planned to enclose all electronic components in an enclosure rated
 for at least IP65, which would protect them from both moisture and dust.

 7.9 Time Constraints
 One of the major constraints we needed to adhere to while designing our system was the
 amount of time we had. We only had two semesters to design and build a functioning
 project, and a final product for our smart parking system needed to be delivered by the
 end of senior design two. To ensure we were staying on track and not falling behind, we
 created two tables consisting of strict deadlines that needed to be met, which can be seen
 in section 13. The first table was for senior design one, and the second was for senior
 design two.

 With only two semesters to complete all research, design, testing, prototyping,
 debugging, and deliverance of a final product, we were prepared to make any major
 design changes to ensure we meet these deadlines. For example, the web and mobile
 applications would have been a great addition to the project, and they would have taken
 our system to another level; but they were scrapped due to not having enough time to
 complete them.

 7.10 Testing and Presentation Constraints
 One of the major constraints that came into play during senior design two was how we
 tested and presented our system. Since we had decided to use ethernet connections
 between the components within our system rather than wireless connections, we always
 needed a power source to be available to us at whatever garage we were working at. To
 deal with this, we used a battery backup or UPS that provided enough electricity, and
 flexibility to run the tests and demonstrations. Additionally, to present our project, we
 thought about potentially building a miniature mock garage to show our proof of concept.
 This could have eased the process of showing how our system works since we did have to
 set it up at an exterior garage.

 73

 8.0 System Design
 In previous sections, we researched the different technologies implemented in our project,
 the standards we needed to follow while developing our design, and the constraints that
 needed to be considered. Now, here is an overview of how the major components of our
 smart parking system work. This section is separated into five parts, the computer vision
 system design, LED display system design, mobile application design, web app design,
 and local server design. Additionally, the final section in 8.0 addresses the components
 we used on our PCB.

 8.1 Computer Vision System Design
 This section gives a detailed discussion of the hardware and software design implemented
 in the computer vision system.

 8.1.1 Computer Vision System Overview
 The computer vision system takes a live video feed of a parking area, detects cars,
 determines whether a car is entering or leaving the parking row, and transmits this data
 over ethernet to the database running on the local server. This system utilizes the OAK-1
 PoE to satisfy video capture and computing requirements. This camera employs the
 Movidius Myriad X VPU, which allows us to use advanced computer vision techniques
 while limiting the amount of data the camera is required to transmit, as explained in
 section 5.2.

 8.1.2 Software Tools
 The table below shows the software tools used to develop the computer vision system.
 Each of these tools is further described in sections 5.1 and 5.2.

 Table 19: Software Development Tools

 Software Description
 DepthAI SDK A python package containing convenience classes and functions that

 helped complete the most common tasks using the DepthAI API.
 DepthAI API The API we used to connect to, configure, and communicate with the

 OAK-1 PoE camera. Supports both Python and C++ APIs.
 Python A high-level, general-purpose programming language. This is the

 language we used to complete computer vision tasks.
 OpenCV An open-source computer vision library containing a variety of

 programming functions aimed at real-time computer vision. This is the
 underline computer vision technology used by DepathAI.

 74

 8.1.3 Software Design
 The computer vision system used a combination of the software tools described above to
 satisfy the requirements described in section 8.1.1. Upon bootup, the camera immediately
 starts doing the tasks possible with the PipelineManager class from the DepthAI SDK.
 The Pipeline Manager allowed us to create a pipeline that defined the workflow processes
 of the computer vision system before loading it to the camera.

 To define these processes, we used DepthAI API installed on the server to populate the
 pipeline with the nodes responsible for accomplishing each task. The pipeline for the
 computer vision system consists of four main processes:

 ● Obtain a live video feed of the parking spots.
 ● Apply image manipulation techniques (edge detector, hough transform, and

 regions of interest).
 ● Apply vehicle detection techniques (Cascade Classifiers, YOLO, or Tiny-YOLO).
 ● Send this data to the local server and LED display system via ethernet.

 The DepthAI API offers predefined nodes we used to accomplish some of these
 processes. However, we also needed to use the script node. In the script node, we wrote
 customized Python code that allowed us to determine whether a car was entering or
 leaving the parking area monitored by the camera.

 For our system to work properly, we must begin with a set of empty parking spaces for
 our system to work properly. The camera will have an aerial view of the parking spaces
 so that as many white lines that define a parking space are shown as possible. Once the
 OAK-1 PoE is plugged into the PoE switch and the camera is booted up, it will take a
 picture of the parking spots to be observed and use the image manipulation techniques
 described in section 5.1.2 to define the regions of interest, i.e., each parking spot. These
 regions of interest are then used as a mask over the live video, and a rectangle is drawn
 for each parking spot. From here, we will use the chosen object detection technique
 described in section 5.1.2.4 to see if any cars are occupying the regions of interest. If a
 car enters a region of interest, that region of interest will go from an unoccupied state to
 an occupied state and vice versa.

 While the computer vision system will immediately react to a car entering or exiting a
 region of interest, it will only transmit this data via ethernet to the local server at a certain
 time interval, depending on the time of day and how busy the parking garage is. This can
 be accomplished via the XLinkOut node on the DepthAI API, which allows data to be
 sent from the OAK device to the host. In addition to the updates, the computer vision
 system can also transmit a live video feed with an overlay of the computer vision
 techniques that have been applied.

 We would like the final design for our computer vision system to require no human input
 and work autonomously upon bootup. Applying such advanced computer vision
 techniques will require extensive testing as there is much room for error. The methods we

 75

 will follow for testing, as well as the actions we will take relating to the design of the
 computer vision system, depending on our results, are further described in section 10.

 For the final implementation, the sample python program, gen2-people-tracker, from the
 DepthAI experiments repository [36] was utilized as a starting point for the camera
 computer vision code. As the name implies, gen2-people-tracker was written to track
 walking people using a people-tracking model. However, for vehicle detection, a vehicle
 detection model from OpenVino called vehicle-detection-0202 [37] was imported to
 replace the people-tracking model. The vehicle model conveniently returns the car ID,
 label, confidence percentage, the x and y coordinates of the upper left corner, and the
 bottom right corner of each vehicle detected. Determining the direction of a vehicle was
 accomplished by using the coordinates returned by the vehicle tracking model. A
 midpoint (i.e., an x and y pair) is computed using the returned coordinates when a vehicle
 is detected for the first time and when it is last seen before it leaves the camera's field of
 view. Thus, providing two pairs, (x1, y1) and (x2, y2), where 1 indicates the initial
 location and 2 is the final location of the vehicle. The origin is the upper left corner of the
 captured frame. Then, the pair is subtracted from the other; if the difference is a negative
 number, it means the car was moving right (entering the premises), and if the value is
 positive, it depicts the car was moving left (leaving the premises). This computation is
 done with every car entering and leaving the camera’s field of view.

 A remote database was utilized to send the necessary information to the control unit.
 Once the vehicle is detected either entering or leaving, the program updates a variable to
 keep track of the entering or leaving state of the vehicle. If the camera detects a vehicle
 entering the parking space, it updates the value with a ‘-1’, depicting one less parking
 spot available. The leaving state of the detected vehicle updates the variable with a ‘+1’,
 essentially indicating one additional parking spot available within the premises. In the
 end, the python code sends the value of the mentioned variable to the camera_log table in
 the parking system database.

 8.1.4 Software Flowchart
 Figure 17 presents a flowchart diagram showing the workflow processes of the computer
 vision software. It can be seen that the primary responsibilities of the computer vision
 system are to detect how many parking spaces are available, transmit this information to
 the local server, and send a live video feed with an overlay of the computer vision
 techniques.

 76

 Figure 17: Flowchart of the Computer Vision System Workflow

 8.1.5 Hardware Design
 Referring to Figure 18 below, a basic block diagram of the hardware within the OAK-1
 PoE is shown. This figure is only meant to provide a general idea of the primary
 connections between the components on the circuit board within the camera. It does not
 show every single connection between the components.

 77

 Figure 18: Basic Block Diagram of the OAK-1 PoE Hardware

 This camera employs two circuit boards known as the BW2098PoE, which is the primary
 baseboard, and the BW2099 SoM, also known as the OAK-SoM-Pro. The baseboard
 includes the RJ45 PoE Connector, which receives an external 1000BASE-T ethernet
 cable that handles data and power transmission. This connector is wired to the PoE
 Si3404, which converts the high-voltage ethernet connection into a regulated,
 low-voltage output supply suitable for the rest of the circuit board. These boards are
 interfaced through two 100-pin DF40C-100DP-0.4V(51) connectors which carry all input
 and output signals and the 5V input. The power system onboard the BW2099 employs a
 switched-mode power supply (SMPS) which regulates the 5V input to provide all the
 necessary digital and analog power for the electronics on the OAK-SoM-Pro.

 The primary electronics on the OAK-SoM-Pro include the Movidius Myriad X VPU, a
 16GB eMMC 5.1 flash device, a 128MB QSPI NOR flash, and a 32kB EEPROM. USB
 3.1 Gen2, QSPI, UART, I2C, 1-lane PCIe, and SDIO are included on the BW2098POE
 baseboard and are routed to the OAK-SoM-Pro through the connectors. The
 OAK-SoM-Pro exposes two 2-lane MIPI CSI-2 D-PHY channels and two 4-lane MIPI
 CSI-2 D-PHY channels, allowing for multiple camera inputs. This system also employs
 an I2S interface which gives us the ability to connect microphones and an external audio
 device to the camera; however, this is a functionality we will probably not use for our
 application.

 The baseboard utilizes a boot selection switch which allows the Movidius Myriad X VPU
 to be booted in a number of ways, including USB-C, EEPROM, NOR flash, eMMC, SPI,
 and ethernet. This is part of what makes this camera so effective since there is a lot of
 flexibility in the ways it can be booted.

 78

 8.2 LED Display System Design
 Major items to cover when describing the LED display system are the images to be
 displayed, as well as the software methods on the microcontroller to display the necessary
 images. This solution includes having two displays daisy-chained to each other back to
 back with the displays facing outward from each other. This allows for the same
 messages to be viewed from either side but also results in the MCU displaying an image
 as though it is on a 32 x 128 display rather than a single 32 x 64 display.

 8.2.1 Display Images
 The display had to indicate how many open spots were down an adjacent “corridor” and
 in some cases, it would display data on two different corridors if the display was situated
 so that it was both adjacent to one corridor and adjacent to an end corridor of the garage.
 If there was only one corridor being displayed for, then all that needed to be displayed
 was an arrow pointing in the direction of indication as well as a total free space count.
 The open spot value should be updated every time the microcontroller receives new data.

 For simplification, images can be shown in 32 x 32 blocks. This would result in one
 display showing two 32 x 32 images. With the two daisy-chained panels, there would be
 four separate 32 x 32 image blocks concurrently displaying. Most often, the second panel
 will be mirroring what is displayed on the other side, except for the numbers being
 properly flipped. Figure 19 shows an example of a 32 x 32-pixel image that gives a rough
 depiction of what the display will look like.

 (a)

 79

 (b)

 Figure 19: LED Example Images (Double Digits) (a) Initial Design (b) Final Design

 In reality, the LEDs would have a small bit of margin between them, unlike these pixel
 images which have zero margins. However, the actual images would have the same
 resolution, which is represented through the gridlines. In the final implementation, the
 colors picked would have a high degree of contrast and visibility for the drivers. If the
 previously mentioned case of the display being situated around a corner corridor was in
 effect, then the display would be periodically switching from one sign to another. A time
 of 5 seconds between display images would be used.

 For example, if the adjacent corridor had 22 open spots (as shown in Figure 19 above),
 and the next corner corridor had 5 open spots, then 5 would be displayed, as shown in
 Figure 20 below.

 (a)

 80

 (b)

 Figure 20: LED Example Images (Single Digit) (a) Initial Design (b) Final Design

 When a driver saw the sign, they would first see that there were 22 open spots to their
 left. After a few seconds, the sign would change to reflect that there were 5 open spots at
 the next corner corridor if they continued ahead. Since the signs were double-sided, these
 corner cases would have to be treated uniquely since the side of the sign facing the corner
 corridor could not show data on that corner corridor since cars coming from that direction
 had already been there. Instead, only the adjacent corridor data would be displayed. This
 resulted in one side of the display cycling between images while the other side constantly
 displayed one single image.

 For the final implementation, a system of dividing each LED display into 4 sections (each
 16 pixels wide) allowed us to display up to 3 digit numbers with an arrow on the
 rightmost side. Examples of this are shown in the final designs (b) next to the initial
 concept designs.

 8.2.2 Hardware
 To alleviate requirements from the PCB, the LED display was powered by a separate
 power supply. The LED matrix panel required a 5V power supply at ~2A. This resulted in
 two separate power supplies needed for one cluster of panels.

 The panel had many shift registers already integrated into the design, greatly reducing the
 pin count required from the microcontroller. Therefore, the display used a single 16-pin
 IDC connector, as shown in Figure 21, for the MCU to interface with it.

 81

 Figure 21: LED Display IDC Connection

 Each of the R, G, and B pins correspond to red, green, and blue values for setting the
 LED colors. There are six of those pins in total, shown in the pinout figure. Pins A, B, C,
 and D serve as the demultiplexing inputs for the LEDs. CLK, STB, and OE correspond to
 the clock, latch, and output enable pins for the LED driver, respectively. All other
 unlabeled pins go to ground. The pinout will be further described under the PCB design
 section.

 8.2.3 Software
 Once the PCB was finished, the microcontroller needed to be programmed to both
 interpret data sent from the local server as well as handle driving the LED display.
 Microchip provides a Software Development Kit (SDK) for programming LCDs called
 the MPLAB® Harmony v3, which could have helped in the development process via its
 Graphics Suite. With minimal porting, the provided functions from the Graphics Suite
 should have allowed the description of shapes and patterns at a high level, making for a
 much easier process of displaying images on the LED display rather than painstakingly
 addressing LEDs individually. Even if problems arose with the SDK, porting existing
 LCD driver functions over should have still been a straightforward task and not required
 creating a new driver from scratch. However, this ended up not being the case with the
 display. The display used a wholly unique mode of communication that made porting
 code not an option and instead required writing our own driver code.

 An overall target in the software design was for the code to be easy to work with at a high
 level. In this case, it would mean having functions that handled tasks like displaying
 numbers on the LED display just by passing in the value received from the local server,
 or functions that handle cycling through multiple display images if there was extra data to
 display, etc. Maintaining this high standard of code readability and usability made for
 fewer mistakes in the images displayed. Even with a graphics library, the images

 82

 displayed are abstracted to fundamental shapes, so functions that handle these shapes to
 display defined images like numbers make for higher-quality code with fewer errors
 throughout.

 The goal with the LED display driver was for it to be a simple translation layer that had a
 suite of functions that handled receiving numbers with keywords or other kinds of
 parameters to potentially indicate the directions the arrows should point in combination
 with numbers to display. Each of these functions only needed to accept up to two-digit
 decimal numbers, which allowed for keeping the functions small and efficient. Regular
 int data types of 8-bit precision more than sufficed, with their value ranging from 0 to
 255. A pseudocode function looked like this: spotsInDirection(section_A_spots, LEFT)

 This was a parent function that had subsequent calls to other sub-functions that
 performed lower and lower level tasks for displaying images on the LED display. This
 started with a call to a function handling arrow displays, either UP, DOWN, LEFT, or
 RIGHT. Then there would be a call to a function handling the display of numbers, only
 accepting inputs ranging from 0 to 99. This function would break down by calling a
 sub-function for single-digit numbers and a sub-function for double-digit numbers since
 either of those cases required the numbers to be located in different areas of the 32 x 32
 region they were displayed in. The main function of the program would be greatly
 cleaned up and easy to follow through this design and implementation methodology.

 There was another level of complexity to factor in when considering the different
 configurations that the LED display could be in. As mentioned earlier, sometimes a
 display could be situated in such a way that two parking alleys could be adjacent to each
 other when one of them was the end of the garage, and the other was the next alley in. In
 this case, at the intersection where a driver could enter the last alley of the garage or the
 second to last, the LED display would show information for both alleys. An example of
 this is shown in Figure 22.

 Figure 22: Corner Alley Example,

 83

 The general structure of the LED display program is shown in Figure 23. Notice the key
 decision point of whether the sign is set up to be displayed for two alleys in the case it is
 at a corner, or if it should display for just one alley, the normal case.

 Figure 23: LED Display Program Flow

 84

 8.3 Mobile App Design
 Initially, the team researched and planned for a mobile app to provide parking availability
 to users. The app’s primary function was to provide the number of available spaces and
 the percentage occupancy of all garages. When selecting one of the garages, it was going
 to provide the number of available spaces per level, information about parking services,
 mobile app developers, app version, and the last updated time. The app was not going to
 offer any administration capabilities as they would be offered in the web app version of
 the parking system. Also, it was designed for the user not to be required to sign in. As
 soon as the mobile app was launched, it was going to fetch updated data from the cloud
 database and display it within a few seconds. However, due to not having enough time,
 the team decided to not implement this software feature to focus on the electrical and
 computer engineering part of the project. Nonetheless, the designs previously done were
 left here to show how it was designed.

 8.3.1 Mobile App Block Diagram
 In the block diagram shown in Figure 24, it can be seen that the mobile app design is
 simple. As soon as the app is launched, the app fetches the data from the cloud database.
 Then, the app immediately displays a summary of all parking garages on the screen, their
 available number of spaces, and a percentage of the number of occupied spaces. Users
 have the option to tap on any of the parking garages on the screen and obtain additional
 information, such as the number of free spaces per level of that specific garage. The app
 updates its data continuously every few seconds at peak times and every few minutes
 during slow times.

 Figure 24: Mobile App Block Diagram

 85

 8.3.2 Mobile App User Interface Design
 The user interface comprises three different screens. The first screen provides
 information from all the garages, the second screen offers the availability of spaces per
 level from the selected parking garage, and the third screen displays information about
 the app and its developers. The prototype design is shown in Figure 25.

 Figure 25: Mobile App GUI Prototype
 (Left: main screen, Center: 2nd screen, Right: About screen)

 8.4 Web App Design
 Initially, the team researched and planned to have a web application to offer the same
 information provided by the mobile app in addition to offering parking administration
 capabilities. Administrators would have been able to create, read, delete, and edit new
 users, parking garages, levels, and sections. In addition, the web app’s landing page was
 going to show the parking garage system general information such as the number of
 available spaces per garage, the ratio of occupancy, and details of the parking garage
 levels. This information was going to be displayed by default without the need to log in.
 The web app was going to also offer a login page where admin and non-admin users
 could access a dashboard where managing the parking system was possible. The
 dashboard also was going to offer the option to see a video feed of the selected camera in
 which the computer vision work in progress could be seen. It was planned for non-admin
 users to have read-only access to the web app, while admin users to have complete
 access. However, due to not having enough time, the team decided to not implement this
 software feature to focus on the electrical and computer engineering part of the project.
 Nonetheless, the designs previously done were left here to show how it was designed.

 86

 8.4.1 Web App Use Case Diagram
 The use case diagram shown in Figure 26 depicts the user’s possible interaction with the
 web app system.

 Figure 26: Web App User Case Diagram

 8.4.2 Database Entity Relationship Diagram (ERD)
 The web app, the mobile app, and the local server (clients) have access to the MongoDB
 database (DB). In order to serve the clients, this document-oriented DB contains several
 collections and documents. There is a parking system collection that contains documents
 for garages, levels, sections, cameras, and logs. These documents keep data related to the
 parking system, and the log document is used to record any incoming and outgoing
 parking space requests for troubleshooting and maintenance purposes. A user collection
 keeps information related to the admin and non-admin user accounts to administer the
 parking system. In addition, a user log document keeps and maintains a record of who did
 what within the web app. A summary of the collection/documents is shown in Figure 27.

 87

 Figure 27: Database Entity Relationship Diagram (ERD)

 8.4.3 Web App User Interface Design
 The web app was to be designed using ReactJS, a part of the MERN stack as previously
 discussed. Figures 28 through 31 show some preliminary designs for the essential pages
 of the app.

 88

 Figure 28: Front Page Design

 Figure 29: Video Fee Page Design

 89

 Figure 30: User Administration Page Design

 Figure 31: Parking Administration Page Design

 90

 8.5 Control Unit Design
 The control unit serves as the central node between the cameras, LED displays, and the
 cloud web server, and it contains all the necessary equipment to support the local
 network, internet connectivity, Wi-Fi signal, and the software running in the server. The
 control unit is divided into two main components, the hardware (i.e., the equipment) and
 the software running on the server. Both parts are discussed in the following two sections,
 including a preliminary design of each major part. In the final implementation of the
 control unit, the connectivity to the internet, Wi-Fi, and web server were not needed as
 the web and mobile app was scrapped, and therefore, they were not implemented.

 8.5.1 Control Unit’s Hardware
 The control unit comprises several elements, as shown in Figure 32 (a). For the server
 board, a single-board computer is used as the control server of the parking system. The
 selected server board comes with the necessary parts: the CPU, Memory RAM, storage
 on where to install the operating system, and a power supply that runs on 120V/60Hz.
 Although this server board provides a display port, no display will be needed for the
 server to function on its daily tasks; the server can be accessed remotely using remote
 control software such as TeamViewer or Remote Desktop. As long as the server is
 connected to the garage network, an administrator can access it remotely for updates and
 maintenance. Nevertheless, a display will be needed for the development stage and for
 demonstrating the proof of concept since a video feed from the camera with the AI
 analysis of the parking spaces overlaid onto the video feed is desired.

 (a) (b)

 Figure 32: Parking System Control Unit. (a) Initial design, (b) Final design.

 A 5-port PoE+ switch provides connectivity between the server board, the Wi-Fi router,
 cameras, and LED displays, effectively creating a local network. The PoE switch
 provides the Power over Ethernet (PoE) necessary to power the cameras and the PCB
 boards. Fortunately, for the proof of concept, this switch does not require any
 configuration as it is an unmanaged switch; the electricity on PoE ports is not turned on
 unless a PoE device is connected, in which case, the switch automatically negotiates the

 91

 power allocated for the plugged-in device. A bigger switch would be needed for a
 complete parking system, probably with 24- or 48-ports, with most of them providing
 PoE. For the Wi-Fi network, a Wi-Fi router would be used. There was a conversation
 with UCF’s IT department about the proper way of providing internet access to the
 control unit via UCF’s network. But, it was not approved for security reasons. However,
 since internet connectivity was no longer required since the web and mobile app were not
 going to be implemented, using a Wi-Fi router was no longer needed. In addition, one
 3-foot patch ethernet cable is used to connect the server board to the 5-port switch, and
 two 25-foot ethernet cables can be used to connect to the camera and the LED display to
 the switch. These Ethernet cables can be either Cat5e or Cat6 as both support PoE and
 speeds of 1Gbps.

 These components would be installed inside a wall-mounted IP-66 electrical enclosure
 box with 16in x 12in x 6in (height x wide x depth) dimensions. In a real scenario, the site
 would provide the power source as an electrical outlet where the equipment can be
 plugged in; however, an battery backup (i.e., an UPS) was used to power the system
 while doing tests and demonstrations. The final hardware design is shown in Figure 34
 (b) above.

 8.5.2 Control Unit’s Software
 The custom software was designed to run on the server, and it consists of three main
 parts, the operating system, the local database, and the custom program that runs the
 parking system. The custom program facilitates the communication between the cameras,
 the PCBs, and the web server in the cloud. For the operating system, Ubuntu Server
 version 22.04 LTS was planned to be used; the LTS designation stands for long-term
 support, which means that throughout the lifetime of this release, there is a commitment
 to update, patch, and maintain. Without long-term support, the operating system can
 become a security risk since vulnerabilities develop over time [29]. Besides being open
 source and free of charge, this Linux distribution is compatible with all the necessary
 software needed for the development of the parking system, such as OpenCV, Java,
 Python, DepthAI, MySQL, and most importantly, the server board. However, for the final
 implementation, the server that was purchased already came with a Windows operating
 system, which was also compatible with everything described above.

 Python is needed since DepthAI, the program that controls the camera is written in
 Python. In addition, the custom program was written in Java. It contains a graphical user
 interface where cameras and displays can be added, edited, and deleted. Also, the
 program provides the means to link cameras to LED displays. This feature is necessary
 since many LED signs can display different information based on the location they are
 installed. For example, two cameras can monitor the spaces in a section of the parking
 garage, and the information provided by them can be displayed in one or two LED signs;
 thus, these cameras and LED signs are said to be linked. A preliminary design of the
 graphical user interface (GUI) of this program is shown in Figure 33 (a). The final GUI
 was redesigned using the color theme and overall look of the web app, as shown in
 Figure 33 (b).

 92

 (a) (b)

 Figure 33: Local Server Java Program GUI Design. (a) Initial Design, (b) Final design.

 Initially, the data received from the cameras were going to be stored in a text file called
 MM-DD-YYYY-1-02-03.log; this file was going to be created by the DepthAI (the
 camera control software) with a name that included the date of the log, the parking garage
 level, section, and camera number. The data inside this file was going to be stored in the
 following format: a timestamp + 12 bytes that will include the level where the camera is
 located, the section number, the camera number, and the number of available spaces.
 (e.g., MM-DD-YYYY-hh-mm-ss 1-01-01-08). The meaning of each digit is summarized
 in Figure 34 (a). However, in the final implementation, the data is written directly to the
 camera_log table in a MySQL database. Figure 34 (b) shows data injected by the camera.

 (a)

 (b)

 93

 Figure 34: Camera Text File Data Format (a) Initial Designed, (b) Final design.

 The software server reads this data from the data; it updates its local variables and sends
 the number of available parking spaces to the LED display linked to the camera that sent
 the data, and updates the database section, level, and garage tables with this number as
 well. This data is sent via ethernet to the LED’s microcontroller to be displayed.

 (a)

 (b)

 Figure 35: Local Server MySQL Database Design (a) Initial Design, (b) Final Design.

 The database is hosted locally using MySQL; this database is an open-sourced relational
 database management system (i.e., tables, rows, and columns). The MySQL program is

 94

 compatible with the chosen operating system, and it works well with Java and Python.
 The database can be managed using a command line terminal or through software called
 MySQL Workbench. This software is a graphical user interface version of the command
 line terminal, which facilitates the management of the database. Fortunately, one of the
 team members had some experience integrating Java and MySQL, which reduced the
 learning curve when coding the program. The initial database design was rather simple,
 as shown in Figure 35 (a); basically, it contained three main tables: a camera table that
 maintains information on every camera; a display table containing the information on
 every LED display; a camera/display link table to determine what display to send data
 from which camera. The camera and display tables also contain the IP address of each
 device for the server to determine what address to send what data. The camera id and the
 display id are the primary keys for their respective tables, and they are the foreign keys in
 the camera/display link table. Figure 35 (b) shows the final database design, which
 includes tables for the garage, levels, and sections used to keep track of the number of
 available spaces that changed in real-time.

 8.6 PCB Components
 This section will introduce the components that exist on the PCB board along with the
 microcontroller. The components that are discussed include an Ethernet PHY Chip, an
 RJ45 Ethernet Port, Insulation-Displacement Contact (IDC) Connectors, a Step-Down
 Voltage Converter Circuit , an oscillator, and a push-button. A detailed schematic
 including all of these components is shown in Section 9.0.

 8.6.1 Ethernet Components
 To interface the ethernet cable with the microcontroller, there were three major
 components that were needed, as shown in Figure 36 below. The components are the
 RJ45 Ethernet Port, Magnetics, the Ethernet PHY, and an external clock. Each of these
 components is further explained in the following sections.

 Figure 36: Simple Schematic of Interface between Ethernet Cable and MCU

 8.6.1.1 RJ45 Ethernet Port
 While operating our smart parking system, we made use of a Power over Ethernet
 Splitter/Extractor close to the PCB to separate the power and data coming from the
 ethernet cable. The data from this splitter was transferred onto a non-PoE cable and
 connected to the RJ-45 Ethernet port on the PCB. The ethernet port we used was one of
 Wurth Elketronik’s non-PoE RJ45 LAN Through Hole Reflow Ethernet Ports. The
 connections between the ethernet port and the PHY chip allowed for there to be two

 95

 separate channels where data can flow with ease. One channel was for transmitting data,
 and the other was for receiving data, however, we did not figure out how to get this
 working in our final design.

 This port is integrated with magnetics which simplified the design that needed to be done
 on the PCB and made for easy connections with the PHY chip. Magnetics were able to be
 implemented external to the port via an ethernet magnetics module, so using a port where
 the magnetics were already integrated into it was convenient. The magnetics were a vital
 part of the connection between the ethernet port and the PHY chip as they mitigate
 electrostatic discharges, ground loops, and noise in addition to providing galvanic
 isolation.

 This ethernet port had two status LEDs which were connected to the Ethernet PHY to
 communicate information such as whether there was activity on the PHY chip or not,
 data speed, and if there is a link between the ethernet cable and the RJ45 port. The LEDs
 were designed in a way where they are parallel and facing opposite directions such that
 we could choose between two colors for the LEDs, as shown in Figure 37.

 Figure 37: Simple Schematic of LEDs on RJ45 Ethernet Port

 8.6.1.2 Ethernet PHY
 The Ethernet PHY is a physical layer transceiver device for sending and receiving
 Ethernet frames based on the OSI network model. The OSI model describes seven layers
 that computer systems use to communicate over a network, and the Ethernet PHY was
 used to help cover two of them, the physical layer and the data link layer, as defined by
 the IEEE 802.3 standard. The PHY chip we used was Texas Instruments’ TLK111. This
 is a single-port Ethernet PHY used for both 10-BASET and 100-BASET signaling. It fit
 nicely with our design as it had the same power supply requirements as the MCU and
 provides all the pins we need for our system to work correctly.

 The connection between the PHY chip and the media access controller (MAC) of the
 MCU is called the media-independent interface (MII). There are many variants to the
 MII; however, we used the reduced MII (RMII) as this reduced the number of pins
 required to connect the PHY chip with the MCU. Additionally, since we were using the
 64-pin package version of our chosen MCU, it is the only interface that was supported. A
 table containing the pins that were used for both the ethernet port interface and RMII is
 shown below.

 96

 Table 20: Ethernet PHY Port Interface/MCU MAC Interface Pins

 Pin Description

 Ethernet Port Pins

 TD-, TD+ Differential Transmit Output: Differential outputs that will be automatically
 configured to 10Base-T signaling.

 RD-, RD+ Differential Receive Input: Differential inputs that will be automatically
 configured to 10Base-T signaling.

 MCU MAC Pins

 MDC Management Data Clock: Clock signal for the MDIO interface.

 MDIO Management Data I/O: Bidirectional command/data signal synchronized to
 the MDC. Either the MCU or PHY may drive this signal.

 TX0, TX1 Transmit Data Bit 0 and Bit 1

 RX0, RX1 Receive Data Bit 0 and Bit 1

 TX_EN Transmit Enable: Indicates the presence of valid data inputs on TX0 & TX1

 RX_DV Receive Data Valid: Indicates that data is present on RX0 and RX1.

 CRS_DV Carrier Sense/ Receive Data Valid : Combines the Carrier Sense and Receive
 Data Valid indications.

 8.6.1.3 External Clock Source
 The RMII required a 50 MHz external clock source to work effectively and we used the
 ACHL-50MHz-EK for this purpose. This clock signal was fed into the Ethernet PHY and
 then sent to the MCU as a reference. We did not ever verify that that this clock signal
 worked correctly, however, a table containing the pins used for the clock interface is
 shown below.

 Table 21: Ethernet PHY Clock Interface Pins

 Pin Description

 XI Crystal/ Oscillator Input
 RMII Reference Clock: Primary clock reference input. For RMII, this must
 be connected to a 50MHz ±50ppm-tolerance CMOS-level oscillator source.

 CLKOUT Clock Output : With the RMII this pin provides a 50 MHz clock signal. This
 allowed the MCU to use the reference clock from the TLK111.

 97

 8.6.2 MCU LED Interface
 Once the MCU received the data sent over the ethernet connection originating from the
 central server through the MAC, it would then need to be reflected on the LED sign.
 Since the directions for pin connections were written for applications with an Arduino
 Uno or Arduino Mega, we had to look at the datasheets for the chips on both of these
 MCUs and see how the pins corresponded with the MCU we were using. After doing
 this, we found that we would need three types of signals for the MCU to communicate
 with the LED sign. The signals we used and a description for each of them are shown in
 the table below.

 Table 22: MCU LED Interface Pins

 Signal Name Description

 PA3-PA27 Parallel I/O Controller (Channel A): Managed fully
 programmable GPIO pins. Six of these pins served as digital pins
 to communicate RGB color values, four of them were connected
 to the LED Demux, and three were connected to the LED
 Drivers’ Clock, Latch, and Outpur Enable.

 8.6.3 Step-Down Voltage Converter Circuit
 When our smart parking system was in operation, our first design was going to use a
 Power over Ethernet Splitter/Extractor close to the PCB to separate the power and data
 coming from the ethernet cord. This power was transferred to a 12 V 5.5 x 2.5 mm DC
 plug and connected to the PCB via a DC jack. From here, Texas Instruments’
 TPS563201, a synchronous step-down voltage regulator, would’ve been used to step
 down the voltage from 12 V to 3.3 V. Stepping the voltage down to this level would
 allow us to provide power to the Ethernet PHY, MCU, and oscillator without damaging
 any components on the board. Referring to Figure 38, a simplified schematic for this
 voltage regulator is shown.

 Figure 38: Simplified Schematic for the TPS563201 [Vout = 0.768*(1+(R1/R2))]

 In order to choose the electronic components we needed to step down the voltage to 3.3
 V, the formula above was used. R2 is the vertical resistor connected to ground and R1 is
 the horizontal resistor connected to Vout. After plugging in 3.3 V for Vout and solving for
 R2/R1, we found that R2/R1 was equal to 3.3. Since this is a ratio, we could choose any
 set of resistors that fit this ratio and decided to work with 33 kΩ and 10 kΩ resistors. In

 98

 addition to these resistors, the datasheet suggests using an inductor with a value of 2.2
 µH, and Cout can be any value between 20 and 68 µF.

 In our current design, we moved away from the TPS563201. Once we realized that our
 design did not pull a lot of current and did not need something that was very efficient, we
 went with a simple linear voltage regulator in the LD1117V33. We were continuing to
 work with a 12 V input but then decided to use a 5 V input as this caused less heat
 dissipation from the regulator.

 8.6.4 IDC Connectors
 In our original design, we had the wrong idea about the connectors that would be needed.
 In Senior Design 1, we thought the PCB would need 3 IDC connectors to communicate
 with components that are external to the board. Two of these connectors would’ve been
 used for the Ethernet PHY and MCU such that the host computer can communicate
 directly with each of these chips. The third connector would’ve been used such that the
 MCU can communicate the LED sign. The IDC Connector that was going to be used to
 communicate with the LED sign was Samtec’s STMM-108-01-G-D. This is a 16-pin
 connector that we thought would allow all connections to be made between the LED Sign
 and MCU through a ribbon cable. The pins on this connector are set in 2 rows of 8 and
 have a 2.0 mm pitch.

 The two IDC Connectors we were going to use to communicate with the MCU and
 Ethernet PHY chip for debugging purposes would’ve been Samtec’s FTSH-105-01-F-D.
 This is a 10-pin, 1.27 mm pitch, micro connector which would give a host computer the
 ability to communicate with the two chips on the board. Each of these chips supports
 JTAG, which is a common way of interfacing with chips. To use these connectors
 effectively, we would need to use a debugger as this will allow us to change the signals
 on the 10-pin connectors into a signal that is able to be plugged into a USB port on a host
 computer.

 In our current design, we took a simpler approach and decided to use a single 1x8 female
 connector for debugging. We made this choice once we realized that Serial Wire
 Debugging was cheaper than JTAG and that you could program the Ethernet PHY
 through the MCU. Additionally, we added three 2x1 female connectors, one was used for
 erasing MCU firmware, and the other two were used as voltage test points. Lastly we
 changed the LED connector to one with a pitch of 2.54 mm similar to a breadboard.

 8.6.5 Push Button
 In our original design, the PCB included one push button, which would’ve allowed us to
 easily reset both the MCU and Ethernet PHY Chip if need be. The reset pin is default
 high and in order to activate it, it needs to be driven low. This would’ve been
 accomplished by tying the positive terminal of the button to the reset pin and the negative
 terminal to ground. When the button was pressed, the reset pin would be driven low and
 reset the MCU. The Ethernet PHY would’ve also reset when this happened as we wouldl
 use the MCU to alter an internal register on the PHY that is latched with its reset
 function. In our current design we decided to omit the push button.

 99

 9.0 Prototyping
 The subsystem in our design that will use a PCB is the LED sign system. The
 components described in section 8.6 were used to develop an initial schematic which is
 shown in Figures 39.1 and 39.2. The large chip that is split in half between the two
 pictures is the Ethernet PHY chip. As we learned more about our system, our design
 changed and we moved away from this initial schematic. Our current design which was
 tested and built onto PCB is shown in Figures 39.3 and 39.4 and the final PCB layout is
 shown in Figures 39.5 and 39.6

 9.1 PCB Schematic Capture

 Figure 39.1: PCB Schematics (Left Side)

 100

 Figure 39.2: PCB Schematics (Right Side)

 Figure 39.3: Current PCB Schematics (Signals)

 101

 Figure 39.4: Current PCB Schematics (Power)

 Figure 39.5: PCB Layout (Top)

 102

 Figure 39.6: PCB Layout (Bottom)

 9.2 Bill of Materials
 Table 23 below displays a BOM for the current design of the PCB. The price per unit is
 represented in the third column, and the value at the bottom of the table shows the total
 cost of all components with quantity included. All components that were not passive
 SMD components, were ordered early so that we could begin our prototyping and testing
 process. We worked with through-hole components at first, and then when we had our
 PCB manufactured, we ordered SMD components for the board. This is a final BOM for
 the PCB and shows what it costs to make each PCB.

 103

 Table 23: PCB Bill of Materials

 Name Footprint Unit Price Manufacturer Quantity Price

 100n C0805 $0.03 Digikey 18 $0.54

 10u C0805 $0.07 Digikey 6 $0.42

 100p C0805 $0.07 Digikey 3 $0.21

 1n C0805 $0.04 Digikey 3 $0.12

 10n C0805 $0.04 Digikey 3 $0.12

 2.2u C0805 $0.11 Digikey 1 $0.11

 4.7u C0805 $0.10 Digikey 1 $0.10

 1u C0805 $0.05 Digikey 2 $0.10

 HDR-F-2.54_1x8 HDR-F-2.54_1X8 $0.65 Digikey 1 $0.65

 HDR-F-2.54_1x2 HDR-F-2.54_1X2 $0.58 Digikey 3 $1.74

 HDR-M-2.54_2x8 HDR-M-2.54_2X8 $0.40 Digikey 1 $0.40

 Ferrite Bead 470 SMD-0603 $0.15 Digikey 3 $0.45

 LED-0805_R LED0805_RED $0.47 Digikey 1 $0.47

 4.87k R0805 $0.04 Digikey 1 $0.04

 2.2k R0805 $0.04 Digikey 9 $0.36

 470 R0805 $0.04 Digikey 2 $0.08

 33k R0805 $0.04 Digikey 3 $0.12

 49.9 R0805 $0.04 Digikey 4 $0.16

 100 R0805 $0.04 Digikey 2 $0.08

 KLDX-0202-B KLDX-0202-B $0.74 Digikey 1 $0.74

 WE-RJ45 74980104400 $6.20 Mouser 1 $6.20

 TLK111PT LQFP-48 $11.34 Mouser 1 $11.34

 ATSAME70J19A LQFP-64 $12.63 Digikey 1 $12.63

 LD1117V33 TO-220-3 $1.32 Digikey 1 $1.32

 ACHL-50MHZ-EK OSC-TH_4P $2.61 Digikey 1 $2.61

 Total $41.11

 104

 10.0 Testing
 To ensure that our final product for senior design 2 functions as expected, each of the
 major components within our overall system must go through a testing process to ensure
 they are working properly. This section is divided into two sections: hardware testing and
 software testing, and we detail the process each component will go through before being
 implemented in our final product. Additionally, we will address the results we expect
 from the testing processes, and the steps we will follow in the case testing does not go as
 expected.

 10.1 Hardware Testing
 The subsystems within our overall design that needed hardware testing include the
 computer vision system, the microcontroller, the PCB, and the PoE switch. The testing
 procedure for these components is explained in the following sections.

 10.1.1 Computer Vision System Hardware Testing
 With the camera being the primary sensing element in our system, the hardware
 components within the camera needed to be functioning as expected. The testing
 procedure for the computer vision system hardware was done to verify that the easily
 testable components were functioning properly. This included powering up, Ethernet
 connection, data transmission over Ethernet, and verification of the camera sensor
 working. By nature of the OAK-1 PoE being an All-in-One solution, we were limited in
 exactly what we could test. Therefore the hardware testing for the computer vision
 system was not extensive.

 The power supply over ethernet needed to be tested at the beginning. If the camera did
 not get powered on, then that needed to be addressed immediately before any other tests
 could have been done. The unique power supply setup, more specifically power delivered
 over the Ethernet or the PoE system was tested following the Luxonis documentations by
 observing continuous green light flashing on the camera. It was planned that if the
 camera did not receive power upon connection, the troubleshooting procedure would start
 at the switch level (e.g., restarting the switch, changing cables, and getting a new POE
 switch).

 Data transmission over the ethernet was the next step in the testing procedure. For the
 initial testing, the depthai-demo program was tested and observed. The time it took to get
 the spatial recognition models running, the maximum amount of time duration the camera
 could maintain a stable connection, and frame rate fluctuations under certain
 circumstances were observed for a better understanding of the system implementation.

 The stability of the camera mount and the camera angle were tested after. To improve the
 vehicle detection capabilities adhering to the system requirements, the stability of the
 mount was tested beforehand. A tripod was used to hoist the camera to capture the video
 feed from a higher point of view. This height was tested by observing the video feed and
 adjusting the height of the tripod simultaneously. The wheel locks on the tripod were also

 105

 set for better stability. The tripod had to be angled perfectly to look over the chosen lanes
 to detect the vehicles with maximum precision.

 The final aspect of computer vision testing was that the control unit was able to run the
 spatial recognition model as well as capable of sending the data to the database
 simultaneously. The recognition model was run for an extended period of time with the
 database updating at each detection, with the purpose of stress testing the control unit
 system. The goal was to observe any sort of discrepancy within the system due to the
 database access and AI models running at the same time for a long period of time.

 With these tests all passing, the OAK-1 PoE camera is ready to go for implementation.

 Figure 40: Luxonis documentation example result of depthai_demo.py running

 10.1.2 Microcontroller Hardware Testing
 The microcontroller needed to be tested for a number of its capabilities, including
 communication over MAC from the integrated Ethernet controller to the Ethernet PHY
 chip and PWM capabilities for driving the LED display. In order to easily prototype our
 design, we made use of a breakout board that fit the specifications of our MCU. This
 breakout board was designed for the Quad flat package (QFP) and a 64-pin layout. Its
 dimensions were 10 x 10 mm with a 0.5 mm pitch between pins. This fit perfectly with
 the dimensions of the Microchip ATSAME70J19A-AN, which used LQFP (low-profile
 QFP) and fit the same standard 10 x 10 mm area with a 0.5 mm pin pitch. The breakout
 board outputted all of the pin connections to contact pads that allowed for either
 through-hole connections or surface-mount type connections. This allowed for headers to
 be soldered onto the board, which would enable the use of jumper cable attachments.
 Additionally, since the spacing of the output pins with headers lined up with a standard

 106

 breadboard, the breakout board was connected directly to a breadboard, making for
 simple testing and prototyping.

 The only way to confirm whether any component was working as desired was to program
 the microcontroller and run the test code. When testing MAC, PWM, or any other
 communication interface, a C program had to be written to drive the pins on the
 microcontroller to output through the corresponding pins for the aforementioned
 purposes.

 For observing the outputs, a multimeter was needed to observe the voltage levels. This
 way, we could ensure that the pins were within the rated parameters described in the
 datasheet. When reading data sent over the pin, we needed an oscilloscope to observe the
 waveforms and a logic analyzer for reading the digital signals. The oscilloscope allowed
 us to inspect the integrity of the signals, while the logic analyzer read the waveforms as
 digital signals, giving us more clarity in debugging and analyzing the interfaces.

 In our initial testing, all we were looking for was basic functionality from all the needed
 peripherals on the microcontroller and to verify they behaved as expected. As long as this
 was the case, we could continue testing the results of code flashed onto the
 microcontroller without worrying whether there were any defects in the MCU itself or
 whether our understanding of how the function on the MCU worked was wrong. This
 sped up the debugging process greatly because fewer variables were in play to contend
 with when debugging possible points of failure in our design.

 In order to run code on the MCU, we needed a proper interface to flash the onboard
 memory with our code to execute. Like many modern microcontrollers, the Microchip
 ATSAME70J19A-AN could be programmed through JTAG. Specific to Arm-based
 microcontrollers, it could be debugged through a 2-wire variant of JTAG called Serial
 Wire Debug (SWD). A common problem was finding a proper hardware debugger that
 was both compatible and cost-efficient. There were many vendor-specific hardware
 debuggers available, but most of them came with a hefty cost. Thankfully, due to the
 open-source community, there was another option to use any hardware debugger.
 Through the open-source software OpenOCD, we could use an existing hardware
 debugger like the popular ST-Link (which is designed for STMicroelectronics devices)
 for our own Microchip MCU.

 With a compatible hardware debugger, we could write any code to our microcontroller
 for testing. There was another feature that the debugger can do besides being a mode of
 flashing the MCU; it also debugged the code, as the name implies. This was further
 highlighted when describing the software side of testing.

 In the final implementation, PWM was not needed for driving the display. Instead, a
 precise pattern of inputs bit-banged to the display was sufficient. Additionally, SWD was
 utilized but only worked via Microchip’s MPLAB® Snap In-Circuit Debugger. For the
 debugger to work, it had to be used in conjunction with Microchip’s IDE MPLAB®.

 107

 10.1.3 PCB Hardware Testing
 The PCB will had a variety of hardware components that need to be tested separately
 from the MCU, including the Ethernet Port and Cable, Ethernet PHY, and the Step-Down
 Voltage Converter Circuit. The following sections will detail the procedures we will
 follow for each of these components before mounting them onto the final PCB.

 10.1.3.1 Ethernet Port and Cable Testing
 Inititally, we wanted the testing procedure for the ethernet port to verify that ethernet data
 can be delivered to the MCU. Before we had our PCB manufactured, we utilized an
 ethernet connector breakout board which allowed the eight pins of the RJ45 ethernet port
 to be easily interfaced with a breadboard. Since the ethernet port we used had integrated
 magnetics, the circuit between this breakout board and the breakout board used for the
 PHY chip was fairly simple. From here, we would’ve prototyped and troubleshooted any
 connections between pins before making the decision to place the RJ45 ethernet port onto
 the PCB.

 After learning more about ethernet components, we realized that this method would cause
 issues with signal distortion since ethernet uses high frequency signals and decided to
 move straight to the pcb. Since the ethernet port will help in linking the Ethernet PHY
 with the rest of the ethernet network, it was important that we made the correct
 connections such that there were two channels for transmitting and receiving data with no
 interruptions. To do this, we followed the schematics available in the datasheet for the
 ethernet port and development board documents very closely. Additionally, we thought of
 using an ethernet cable tester between the ethernet cable and the ethernet port to tell us if
 each end of the cable we used follows the same wiring standards described in section
 6.2.1. If the ends of the wire did not follow the same standards, we would’ve needed to
 change the wiring inside the cable. Unfortunately, at the conclusion of our project we
 never got this component to work.

 10.1.3.2 Ethernet PHY Testing
 The testing procedure for the Ethernet PHY would’ve verified the data speed we can
 achieve with our system, 10BASE-T or 100BASE-T, in addition to making sure all
 connections between the ethernet port and MCU were correct. Since the PHY we used
 has a JTAG interface, we initially thought we could communicate directly to the
 hardware chip through a host computer. We would’ve use this JTAG interface to
 complete a boundary scan on the PHY chip and ensure that every external wire connected
 to this chip is on the correct pin. Since we decided to switch over to SWD this method
 was no longer possible

 In addition to the major connections for data transfer between the ethernet port, MCU,
 and PHY chip, we also wanted to test the status LED drivers and the clock. Testing the
 status LED drivers would’ve show us each of the modes that these pins can function and
 the type of data transmitted with each mode. To test the external oscillator connected to
 the PHY chip, we simply built this onto a breadboard and verified that the PHY chip was
 receiving a 50 MHz signal and transmitting a 50 MHz signal to the MCU.

 108

 10.1.3.3 Step-Down Voltage Converter Circuit Testing
 The testing procedure for the step-down voltage converter circuit verified that the voltage
 signal coming from the DC jack can be stepped down to a level that is suitable to power
 the MCU and Ethernet PHY without causing any damage. The initial voltage regulator
 circuit used a 6-pin 1.6-mm x 2.9-mm SOT-23 package, so we used a breakout board that
 fit this to get access to the pins for prototyping. After working with this for a short time
 and making the switch to a linear voltage regulator, the testing became more simple as
 the voltage regulator was a three pin through hole. The power circuit in our design used a
 variety of electronics, so it is important to mention the type we used. We used
 surface-mount electronics when we ordered our PCB; however, during the prototyping
 phase, we used through-hole electronics to model all power circuits.

 The step-down voltage converter circuit used a DC jack at the input, so the first thing we
 did was use a multimeter to measure the voltage across the input and ensure that we were
 seeing 5 V. From here, before we made any connections between the MCU, Ethernet
 PHY, and the output of the step-down voltage converter circuit, we verified that we were
 seeing the expected output voltage of 3.3 V. This confirmed that the voltage output was at
 a level required for the safe operation of the MCU and Ethernet PHY and no damage
 would be caused.

 In the case that we decided that we would like our design to be a bit sleeker, we had the
 idea that instead of using a DC jack, we would replace the ethernet port on the board with
 one that is designed for PoE applications. This would have some drawbacks, though, as
 this introduces challenges with finding a voltage regulator or buck converter that can
 handle a PoE voltage input range. With this said we did not follow through with this idea.

 10.2 Software Testing
 The subsystems within our overall design that needed software testing include the
 computer vision system, the central server, the microcontroller, the web app, and the
 mobile app. The testing procedure for these components is explained in the following
 sections.

 10.2.1 Computer Vision System Software Testing
 The computer vision software testing procedure verified that the software could define
 what a parking space is and receive/transmit data with the central server over ethernet. In
 the beginning, the testing was done with just recording being sent to the python script. No
 live testing was done at the beginning stages, which enabled the team to execute the
 testing and sharpen the accuracy of the detection model in smaller scopes. Several vehicle
 detection models were utilized and tested to be selected for the final implementation. For
 example, at the beginning stages of the development, the depthai-demo repository and its
 vehicle detection model, called vehicle-detection-adas-0200, were tested for accuracy.
 Later with further clarification of project goals, the depthai-experiment repository was
 utilized and tested for final project implementation.

 109

 The second requirement tested was the models being able to detect correct objects. In a
 parking lot other than cars, there may be people walking in front of the camera, or there
 could be different objects captured in the video feed. To make the parking system more
 realistic, emphasis needed to be put on the capabilities of the model detecting and
 counting only vehicles. This would mean any other objects would need to be ignored by
 the spatial recognition model. The vehicle detection model used for the system, named
 vehicle-detection-0202, made this testing much simpler. This model was specifically
 pre-trained to detect only vehicles and return certain preset outputs. Thus the testing
 procedure to ensure only valid objects(vehicles) were detected was extremely simple. The
 camera was run for at least three hours, and the team observed if people captured in the
 camera frame or any other objects; created inaccuracy within the detection model. And as
 expected, the model was not affected by any other objects being within the camera feed
 and detected only the vehicles available on the camera frame.

 Tests for data transmission to the database were also done for efficient and uninterrupted
 implementation of the parking system. The initial plan was to implement a function that
 would connect with the MySQL database, and the data would be updated every 5 seconds
 interval. However, the final implementation had set up the database update function to
 communicate and transmit value at every valid detection counted towards the leaving or
 entering label. This functionality was tested for over 300 detected cars and was observed
 for database updates for accuracy.

 With us using advanced computer vision techniques in our design, we needed to have a
 backup plan for the software design in the case that parking space detection did not
 function as expected and presented us with too many issues. Some of the methods
 described below would have required our system to need human input before it can
 function instead of working autonomously; however, we knew they would be easier to
 implement and not present as many issues.

 The first method we were looking at implementing was using bright-colored squares on
 each of the parking spots that we want to be monitored. The computer vision software
 system would then count these squares and return the number of open parking spots
 based on the number of squares it can see. This method would get rid of all object
 detection features and be much more simple than the method described in previous
 sections.

 The second method we were looking at implementing would involve using OpenCV’s
 mouse as a paintbrush function. The moment we set up the camera, we would simply use
 a mouse connected to the server to draw on the screen the parking spaces we would want
 to be monitored and then define these as our regions of interest. From here, we would
 then use the chosen object detection method to compute whether a car is occupying a
 region of interest or not. Using this method would be simpler than our original method
 but also more complex than the method described in the paragraph above since we would
 still be using object detection functions.

 110

 The final method we were looking at implementing would involve not keeping track of
 each parking spot but instead keeping track of the number of cars that enter and exit a
 row of parking spaces. This method does have one drawback being that it would require
 us to buy a second camera so that we can monitor the entry/exit points on each side of the
 row; however, it would also allow us to keep track of many more parking spaces. Using
 this method would negate the constraints caused by the ceiling, as explained in section
 7.2, which makes this a very attractive option.

 10.2.2 Local Server Software Testing
 Several tests were required to ensure the correct functioning of the local server. The team
 needed to ensure that all the components were functioning as designed, such as having
 connectivity with the camera and with the PCB. One way to check connectivity with the
 camera and the PCB is by pinging their IP address (e.g., ping 192.168.1.200) from the
 server. If there is a response from them, it means there is connectivity.

 Although the web app and mobile app features of the system were scrapped from the
 project, the testing procedures between the server and the web and mobile components
 were left here to show how they could be done.

 After establishing the server’s internet connection, connectivity to the cloud database
 must be performed. Since the custom programs were developed in Java, the MongoDB
 drivers for Java must be downloaded and imported into a small Java program. Then, a
 new MongoDB client variable is declared and initialized with the internet address of the
 MongoDB database site, then JAVA is instructed to get the database information from the
 provided address and provided credentials. If everything is configured correctly, the
 program will display the database information; otherwise, an error will be shown instead.

 Checking the connectivity of the local server with the cameras is straightforward. Once
 the cameras are connected to the PoE, switched and turned on, and python and DepthAI
 are installed in the local server, a simple python script provided by DepthAI
 documentation can search the local network for connected cameras. The script will
 display the camera’s IP address and other camera information. If the script does not find
 any cameras, the camera may not be on, or it may not have obtained an IP address.

 The connectivity with the display’s microcontroller is also straightforward. A ping
 command ran from the Windows command terminal using the microcontroller’s IP
 address which has previously been assigned, can help determine if the server can talk to
 the microcontroller. Connectivity has been established if there is a response from the
 microcontroller. At the end of the project, the ethernet portion of the PCB could not be
 completed; therefore, there was no connectivity between the server and the PCB to test.

 It is important to note that the camera and the display’s microcontroller are assigned IP
 addresses before these connectivity tests. The wireless router’s DHCP server handles and
 gives IP addresses to these two devices. Two IP addresses must be reserved beforehand
 for these two devices using each ethernet port’s MAC addresses, so when they initially
 connect to the network and request an IP address, the DHCP will see their respective

 111

 MAC addresses and assign the reserved IP address. This is essential because the local
 database will maintain the IP address of the devices connected to it in its records, and
 these addresses must not change.

 One last test can be done on the wireless router’s Wi-FI network. We can scan for
 available Wi-Fi networks using a smartphone built-in Wi-Fi app to determine if the Wi-Fi
 parking system is on the list. If it does, we can ensure that the phone can connect to that
 Wi-Fi using a predetermined password.

 The test of the Java programs was completed at every step during development, which
 included writing and reading to the database and sending data via ethernet to a PCB/LED
 display emulator. There was no connection to the PCB, an emulator had to be developed
 that could behave as an ethernet device that responded to the server whenever the server
 tried to send the new number of available spaces to the emulated displays.

 10.2.3 Microcontroller Software Testing
 Testing C code written for a microcontroller can be more cumbersome than that of
 PC-targeted C code. When writing code for a PC, it can be quickly debugged since the
 target platform is the same platform the code is generally written on. When writing C
 code targeted at a microcontroller, the code has to be compiled and then flashed over to
 the MCU. This adds extra steps to the process, discouraging programmers from
 implementing minute changes in code before recompiling and testing again. Additionally,
 there are few options for observing the output of code when running on a microcontroller,
 unlike a PC-targeted executable which can be observed in the terminal, with functions
 like print statements used for aiding in debugging.

 There was a solution that helped to alleviate the problem of debugging for
 microcontrollers, and that was the Serial Wire Debug capabilities of the Arm Cortex-M7
 used for our target microcontroller. Through SWD, we could step through code and
 manipulate the flow of the program to better observe the code's behavior on the MCU.
 Though we could not see direct output to a terminal through print statements, we could
 observe the direct effects of the code on the physical outputs through a logic analyzer or
 oscilloscope, as mentioned in the hardware testing section. This almost eliminated the
 problem posed by the limitation of needing to flash the target microcontroller when code
 could immediately be run on a step-by-step basis when it was connected via a hardware
 debugger.

 10.2.4 Web App Testing
 Although the web app and mobile app features of the system were scrapped from the
 project, the testing procedures were left here to show how it was planned to be done.

 For web applications, some of the core testing to make sure the smart parking system is
 catered to the end-users sufficiently are security aspects of user info, the performance of
 the website while broadcasting video footage, graphics user interface usability also the
 core functionality of reading the parking data and showcasing them onto the web
 application.

 112

 Functionality testing is indeed the main testing requirement for this project. The web
 application needs to be able to access the data from the server database and showcase the
 data on different components added to the website. So, after the computer vision testing,
 when the data of parking locations and the number of open parking spots have been
 determined, the web app API needs to be able to gather the data from the local server
 database. This data further needs to be displayed on the front end of the web app with
 proper effects and positioning for the end-users to access the data easily. Thus, the
 receiving and updating of the data and showcasing of the updated data needs to be tested
 deliberately for proper implementation. This testing can be done through numerous
 interactions of parking data gathered over time. Frequently changing parking situations
 and observing the data displayed on the web application will ensure accuracy.

 Along with the functionality, efficient implementation of the graphical user interface is
 crucial. In modern days one of the main drivers of usability and increasing user traffic for
 a system is to have a user-friendly interface for the consumers to interact with. Smart
 Parking is planned to have a user-friendly web app interface for the customer to interact
 with the system with ease. This includes visual representations, complementing color
 themes, and user-friendly components to enhance the user experience. Since the smart
 park app is catered to UCF students, a black and gold theme is intended to be applied.
 The web application would allow multiple pages to be hosted; that way, the data on the
 web application are not all clustered together. The vacant positions in the parking spots
 are designed to be in green font color and red for the taken spots. A web page is designed
 to showcase the live video feed of the parking spots. To test the user experience, multiple
 students would be asked to try out and browse through the web application. That was, the
 usability of the web application can be tested, and with the feedback gathered, there
 would be the potential scope for improvements.

 For a steady and reliable connection between the web application and the local server set
 (which gathers the data from the cameras), interface testing needs to be implemented.
 Smart Parking web application would communicate with the server database in real-time
 to ensure a direct data feed for the end-users. Thus, live and agile communication
 between the application and server needs to be thoroughly checked over a long period of
 iterations to confirm edge cases. Also, the database can crash, or momentary network
 interrupts would cause the web application to stop acting accurately. Thus, to prevent
 mistakes in showing the intended data, a notification system or an error message system
 must be set and tested to communicate with the users if needed. Interrupts while
 browsing through the web applications for the users also would be checked.

 Web applications for smart parking also should be tested for compatibility. In the present
 day, there are a lot of technologies that support a lot of different types of web
 applications. However, depending on operating systems, different devices, and web
 browsers, the architecture of the web applications must be programmed to support all
 different types of technologies. Thus, for the smart parking system, the web application
 should be launched and tested on different devices and different web browsers to ensure
 complete compatibility across technologies. Responsiveness is also one of the

 113

 components that need to be considered. Some end users may use mobile phones to access
 the web application externally. In that case, the web application must be able to cater to
 the users’ needs. Thus, responsiveness across multiple devices needs to be implemented
 and thoroughly tested. The web application should retain its readability and accessibility
 across platforms. An iPad screen view and an iPhone screen view would be different.
 However, during implementation, the front-end side of the web server must be designed
 to change as the platforms of the devices are changing. Google lighthouse can be used for
 compatibility and accessibility metrics.

 With functional testing, the concept of performance testing must also be considered.
 Smart Park app will dynamically access the local database and have a feature to showcase
 real-time video footage of the parking slots for the end-users on a web page. Any
 real-time application can put stress on performance metrics. It would require high
 computational power to constantly communicate with the server and display the video
 footage to the users. At the same time, load testing is one of the more important concepts
 as well. UCF being one of the largest schools in Florida, the app potentially would need
 to support a lot of students accessing it daily. This would stress the performance of the
 web application due to the huge amount of digital traffic. For the project's scope, even
 though the web application would not need compatibility with thousands of students,
 multiple individuals need to be able to access the web application simultaneously. Thus
 stress load testing must be done on the web application for some iterations over the senior
 design two periods. This includes testing the connection between the web application and
 the users. This would ensure web applications have the capability to support a large
 number of data requests and, at the same time, handle a large amount of data from the
 database.

 Potential vulnerabilities for the web application would need to be thoroughly tested as
 well. The user login would need to be authenticated for the smart parking application.
 Features like password strength and password matching while creating and accessing user
 profiles must be tested on multiple occasions to ensure secure authentication. This needs
 to be implemented by adding multiple password restrictions while creating a user profile
 and validation API while trying to access the profile. The restriction could allow standard
 security measures like having numbers, special characters, and lowercase and uppercase
 letters. The web application needs to be tested to ensure only correct combinations of
 usernames and passwords are utilized to access the web application. Right user name and
 wrong password, wrong user name and right password, wrong user name and wrong
 password - all three of these scenarios should be checked and tested thoroughly for the
 security aspects of the web applications. At the same time, the validation capabilities
 need to be checked and tested. Whether the users can connect and access the website with
 the correct credentials must be tested on different occasions.

 10.2.5 Mobile App Testing
 Although the web app and mobile app features of the system were scrapped from the
 project and not implemented, the tests for the mobile app were left here to show how it
 was planned to be done.

 114

 The Smart Parking system is designed to enable the feature of a mobile app. A lot of the
 new technology corporations are focusing on developing mobile applications along with
 web application implementations. This caters to different users, is cross-platform, and
 plays a vital role in increasing digital foot traffic and improving user experience through
 multiple outlets. However, for the current project scope, keeping workload and time
 constraints in mind, a mobile application along with a web application could be hindering
 productivity. Thus the mobile application part of the smart park system is planned to be
 designed with barebone concepts.

 The functional testing would need to be done across the mobile application. Like web
 applications, the core functionality is the main aspect of the success metric of mobile
 applications. Being able to properly handle the functional properties like showing empty
 parking lot status and the login and logout functionalities. The mobile application must
 also access the local database to showcase the data gathered. The system is planned to be
 designed to gather data from the computer vision algorithms from the cameras and make
 an educated decision on detecting vacant parking spots. Later this detection data would
 be stored in a local database, and the API would need to communicate with the database
 to ensure data transmission. Later from the frontend stack, the website would access the
 API through different requests to transmit the necessary data through web pages. This
 functionality needs to be accurate and must be tested over several iterations throughout
 senior design 2. Since the mobile application is not planned to have as many features as a
 web application, the testing processes would be less rigorous. However, functional testing
 has to be done to provide the end-users with the most accurate data.

 The web application's graphical interface is planned to have an easily maneuverable
 content interface so that the user experience can be improved to increase digital foot
 traffic for the system. With the integration of the mobile app and since, in today’s world,
 usage of mobile devices is increasing with time, the importance of a robust graphic user
 interface is immense. As depicted in the Figma snapshot in an earlier section, the mobile
 app is designed to follow the UCF color theme of black and white. On top of that, the
 data is set to display on a light blue box for better visibility, and different font colors are
 set to be used for vacant spots or parking that are not available. To test the user
 experience of the mobile application’s graphics interface, several students would be asked
 to use and browse through the application and provide feedback on their experience.
 Improvements can be made to alter the interface based on the test results.

 Like the web application, the mobile application would also require flawless data
 transmission from the local server to the application. So the communication network and
 efficiency in communication need to be tested. However, the testing procedure would be
 similar to the web application interface testing. The process would include observing
 numerous communication interactions between the database and mobile application and
 measuring interrupts while using the mobile application. Notification of the error
 message system would also need to be implemented for any network outage or server
 crash situations.

 115

 The memory storage for mobile devices is not the same as a desktop application. Thus
 memory tests need to be done to make sure that the memory usage for the mobile app is
 optimized. This would include figuring out the core components of the mobile
 application functionality and only utilizing the components necessary for the main
 function of the system. This would ensure memory optimization and metric performance
 enhancement.

 Performance testing is one of the main tests that need to be done for the web application.
 However, the web application is set to be able to provide a real-time video feed to its web
 page for the users. However, the mobile application is set to only showcase the number of
 parking available within the parking slot. Thus the application would not require as much
 in-depth computation power. However, performance testing still needs to be done to
 ensure correct data is being shown to the users at all times. In addition, mobile
 applications have a new aspect of performance testing. Mobile devices operate on DC
 power, and depending on the computational operation done on the device; the battery gets
 drained faster or slower. Thus the mobile application would need to be optimized to
 preserve battery power. For this aspect of testing, the mobile app is intended to be
 activated at multiple intervals throughout the day and observe the battery drainage metric
 over time. Also, the loading and start-up time for the mobile application should be tested
 while the phone is in regular usage as well as in more intensive usage. This is also done
 to test the response time while a user tries to put in a request to fetch data from the
 database.

 The mobile application needs to be compatible with multiple operating systems and
 devices. There are a lot of mobile device technologies introduced daily, and the mobile
 application needs to be designed to be supported on any device screen size and device
 operating systems like android or iOS. Thus the compatibility test should include using
 the application on numerous devices with different screen sizes and observing the
 changes. Based on the observation, improvements can be made to integrate the
 application with the different devices.

 The login and sign-up options would be provided in the mobile application; thus, security
 testing is required. Like the web application, password requirements of lowercase and
 uppercase letters, number, and special characters must be implemented for the mobile
 application sign-up process. Also, the validation process while logged in needs to be
 tested so that users can log in with the correct credentials. The same three scenarios need
 to be tested for security purposes - login with the wrong username and right password,
 right username and wrong password, and wrong password and wrong username. The
 mobile application system should reject logging in for all these scenarios.

 116

 11.0 Mounting and Installation Procedure
 Parking systems require proper positioning and a clear view to be as efficient as possible
 and to serve their purpose to the fullest of their functionalities. Some of the
 implementations have been discussed in the existing technologies section earlier in this
 document. Some of the more popular mounting systems include overhead - onto ceiling
 sensor mounts, on-wall camera mounts, camera, and network sensors mounted on lamp
 posts, and one of the more innovative applications of drilling sensors within the streets or
 on the pavement for smart detection purposes. These implementations were researched
 and implemented in an efficient way to gather data or capture video recordings with
 optimum lighting conditions and to provide the safest location for the sensors to
 communicate the data gathered.

 Such installations often require extensive measures, such as getting permission from
 authorities to be able to drill into the pavements or attach additional devices to walls or
 electric posts around the city, which would also require extra funding set aside just for the
 mounting procedure. Such costs are usually counted within the total spending budget for
 the research and development of large corporations. However, for the current Smart
 Parking Project, such extensive measures for installation and mounting would hinder the
 development project of the parking system. Thus, much caution and creative thinking
 were needed for the installation plan module for the project.

 The Smart Parking system at the University of Central Florida was planned to utilize
 computer vision algorithms through video cameras to make educated detections of vacant
 car parking spots from selected parking slots. With the increasing student count within
 the university and students returning to campus after a long remote session of the school
 curriculum, during certain times of the day - the parking conditions in the garages
 become unbearable - due to the lack of indication systems for the students. The Smart
 Parking System was planned to be designed to provide students with live video feeds of
 parking situations and indications of vacant parking spots utilizing LED signs. Therefore,
 the positioning and mounting of the camera equipment are really important.

 The camera equipment needed a clear view from a high/elevated position to record the
 selected parking spots. Also, the luminosity of the location needed to be optimized for
 smart detecting purposes. Keeping all these requirement categories in consideration, the
 UCF parking garage C top floor would be utilized to implement, test, and demonstrate the
 smart parking system. The top floor of the parking garage would provide ample sunlight
 as well as space to mount camera equipment in an elevated position to be able to capture
 the recording of the selected parking area.

 The Smart Parking System was designed to use two cameras set in opposite directions to
 look over approximately ten parking spots. Thus two tripod mounted cameras would be
 able to capture the spots between them. However, after further testing with the cameras
 and tripod positioning, the final number of parking spots that were intended to be
 monitored can be adjusted. The motivation behind the positioning of the cameras was to
 be able to capture multiple cars positioning from side angles. A depiction of the camera
 view is added in Figure 41.

 117

 Figure 41: Point of View from Camera

 If the computer vision algorithm failed to detect the cars from this angle in the garage,
 there was another angle that was in the discussion which needed to be tested. The point of
 view from the camera from the second angle can be seen in Figure 42.

 Figure 42: Secondary Point of View from Camera

 118

 The smart parking system utilized a switch, Wifi router, and local server for the main
 control unit. The control unit was the main component of the Smart Parking System,
 which was practically in charge of communicating between the cameras and transmitting
 data to the web and mobile applications. The database would directly gather its data from
 within the local server, and the server would also be running algorithms in real-time to
 detect the parking situation in the allocated parking slots. Due to the importance of the
 control unit, a VEVOR electric enclosure box, which is waterproof and dustproof, could
 protect the control unit in severe weather conditions. Inside the protection box, plywood
 could be screwed in, and on the plywood, the switch, wifi router, and local servers could
 be set up for steadiness. Ethernet cables had to be connected from the switch to the
 cameras for data transmission to the local server. The Wifi router could provide an
 internet connection for the control unit and enable the communication system.

 The box containing the control unit could be mounted on the wall with commercial
 equipment. However, that would have required extra funding with much more production
 time and paperwork for authorization. The scope of the smart parking project was not
 designed to support such installation within the timeframe and budget. Considering the
 project circumstances, such extensive mounting was not possible; thus, to support the
 control unit box, it was set to the side temporarily for testing and demonstration. Until
 further advice from the UCF authority, the temporary setup for the control unit box was
 considered for the smart park project.

 LED signs were utilized for visualization as well. A lot of parking garages had
 implemented the usage of LED signs displaying the number of available parking spots,
 the garage levels with open parking locations, as well as directions indicated with arrows
 through LED signs. Orlando’s Disney Springs was one of the corporations that had
 utilized this method to lessen the parking difficulties for visitors. To enhance the user
 experience with the Smart Parking system, LED signs gave directions and indicated the
 number of spots that were in use. To mount the LED signs, there were a lot of wall
 mounts available. However, the mounting equipment could exceed the budget for the
 scope of the intended project. Keeping that in mind for demonstration purposes, the
 double-sided heavy-duty adhesive tape would be used to mount the LED signs on the
 wall. This way, the effectiveness of the LED signs could be tested as well as future
 improvements as far as the mounting and installation could be discussed as well.

 A few changes in the final implementation started with the use of ethernet on all devices,
 instead of using Wifi to communicate between the display assembly and the control unit.
 This reduced complexity in the mounting needs and resulted in only a network switch
 being needed to route all the ethernet connections. The detection system for the parking
 garage also changed, resulting in cameras needing to only be at each end of a parking
 row. Therefore, cameras were situated to the side of the row so that they had an angle (via
 tripod mount) to the choke point of the row where vehicles entered and exited the region.

 119

 12.0 Project Operation
 For the proper operation of the smart parking system, there are a few requirements that
 should be noted. This section outlines those requirements for all systems in our project,
 including the camera, the server, the PCB, and the LED Display.

 12.1 Camera and Server
 For the camera to be operational, what is needed is a sufficient PoE connection that can
 power the camera in addition to allowing for data transfers. As mentioned in section 11.0,
 a proper mounting system is also required. For how the team implemented the vehicle
 detection, the cameras must be mounted at either end of a parking row, pointed
 perpendicular to the traffic flow. This reduces the amount of noise in the camera feed so
 that primarily vehicles entering the row are seen.

 The server requires a 12V/3A power supply for operation. It must be connected to the
 network switch via ethernet, which is, in turn, connected to the camera and the display
 assembly. On powerup, the server must launch a script for handling the database, then a
 script for connecting to the display assembly, and finally launch the GUI. The GUI is
 optional for the operation of all the LED displays inside the garage, but it is necessary for
 viewing all of the data of available parking spots on a per-level basis for the garage.

 12.2 PCB and LED Display
 For proper operation of the PCB, it should be connected to the PoE switch via an ethernet
 splitter to have both power and data connections. An MPLAB Snap In-Circuit Debugger
 should be connected to the 1x8 female header pins to allow communication with the
 chips on board the PCB. Additionally, a ribbon cable should be connected with the 2x8
 male header pins to communicate with an LED Display. If the compiler does not
 recognize the microchip, a jumper cable should be used to connect the ERASE pin to
 +3.3V to erase the device firmware.

 For proper operation of the LED Display, it should receive a 5V connection rated for 4 A
 from an exterior power source. Additionally, a ribbon cable should be connected from the
 PCB to the input of the LED Display. This will allow the user to show the desired
 information on the LED sign. It is important to ensure the LED Display is connected to
 the input rather than the output used for daisy chaining; otherwise, the LED Display will
 not work properly.

 13.0 Project Budgeting and Financing
 The estimated budget we set for ourselves at the beginning of the semester was about
 $1,500. A breakdown of the current budget with the components we plan to use is
 presented in Table 24 below. All financing will be provided out-of-pocket by the team
 members.

 120

 Table 24: Budget Breakdown

 Item Description Qty Availability Unit
 Price Price

 Camera Oak-1-PoE (with 10%
 discount) 1 Available $224.10 $224.10

 LED Displays RGB LED Matrix Panel -
 32x64 2 Available $49.95 $91.90

 Custom PCB PCB + Components estimate 3 $48.51 $145.53

 Power Supply
 (PCB &
 Displays)

 Power Supply 12V/5V (2A) 3 Available $10.95 $32.85

 Server Board ODYSSEY - X86J4125864 1 On backorder
 (6/3/2022) $238.00 $238.00

 Wifi Router GL.iNet GL-AR750S-Ext
 Gigabit 1 Available $65.61 $65.61

 5-Port PoE
 Switch STEAMEMO - GPOE204 1 Available $33.99 $33.99

 Heroku Free Basic plan 1 Available $0.00 $0.00

 MongoDB Free Basic plan 1 Available $0.00 $0.00

 Ethernet
 Cables

 25 feet Cat5e ethernet cable
 3-foot patch ethernet cables
 cables

 2
 3

 Already owned
 Already owned $0.00 $0.00

 Miscellaneous Parts 1 $100.00 $100.00

 Total $886.45

 121

 14.0 Project Milestones for Each Semester

 14.1 Semester 1 (Senior Design 1)
 The major milestones we pursued throughout senior design 1 are shown in Table 25
 below.

 Table 25: Senior Design 1 Milestones

 Week # Dates
 (Sunday - Saturday) Milestones

 1 1/9/2022 - 1/15/2022 Form Project Group

 2 1/16/2022 - 1/22/2022
 Begin thinking of project ideas to pursue

 Attend SD Bootcamp on Thursday (1/20)

 3 1/23/2022 - 1/29/2022
 Submit Bootcamp Assignment on Friday (1/28)

 Begin working on DCV1

 4 1/30/22 - 2/05/2022 Finalize DCV1 and submit on Friday (2/4)

 5 2/06/22 - 2/12/2022
 Attend a meeting with Dr. Richie on Wednesday at
 8 AM (2/9)

 Begin working on DCV2

 6 2/13/2022 - 2/19/2022 Finalize DCV2 and submit on Friday (2/18)

 7, 8, 9,
 10

 2/20/2022 - 3/19/22 Begin working on 60 page draft SD1
 Documentation

 11 3/20/2022 - 3/26/2022 Finalize 60 page draft SD1 Documentation and
 submit on Friday (3/25)

 12 3/27/2022 - 4/2/2022
 Receive feedback on 60 page draft SD1 Document

 Begin working on next 40 pages of SD1
 Document

 13 4/3/2022 - 4/9/2022 Finalize 100 page draft SD1 Documentation and
 submit on Friday (4/8)

 14, 15 4/10/2022 - 4/23/2022 Begin working on the final 20 pages of the SD1
 Document

 16 4/24/2022 - 4/30/2022 Finalize and submit Final Documentation on
 Tuesday (4/26)

 122

 14.2 Semester 2 (Senior Design 2)
 The major milestones for senior design 2 have been broken down into two phases: the
 prototype phase and the final product phase. The dates and week numbers that each of
 these milestones happened are represented in Table 26 below.

 Table 26: Senior Design 2 Milestone

 Week # Dates
 (Sunday - Saturday) Milestone

 Prototype Phase

 1,2 8/21/2022 - 9/3/2022 Begin acquiring materials for construction of
 first prototype

 3, 4, 5,
 6, 7, 8,
 9, 10,
 11

 9/4/2022 - 11/12/2022

 Construct first prototype and begin testing on
 hardware and software

 If need be, make revisions to the design,
 requirement specifications, and functions of our
 project

 12 11/13/2022 - 11/19/2022

 Finalize any software development needed for
 the final product

 Construct updated prototype and begin final
 design testing on hardware and software

 Final Product Phase

 12,13 11/6/2022 - 11/19/2022
 Work on conference paper

 14, 15 11/20/2022 - 12/3/2022

 Work with the updated prototype to create the
 final working product

 Prepare for final presentation (Final Demo,
 Final Presentation PowerPoint)

 Present and conclude project

 Make updates to SD1 documentation to finalize
 SD2 documentation

 123

 15.0 Project Management
 With such a large project and only a limited amount of time to complete, it is important to
 discuss how we managed our team and project throughout the semesters. Project
 management played a large part in the way our team functioned because it ensured that
 we were all working well together and following agreed-upon ways of conducting work
 and communication. This section will describe the tools we used and the methods we
 followed throughout our design process that helped contribute to our success.

 Proper communication is a vital part of any team's success, and some tools that our team
 used to help us accomplish this were Discord and Zoom. Discord is a popular VoIP,
 instant messaging, and distribution platform. This application allows users to create
 unique text channels and designate the type of information that should be discussed in it,
 in addition to allowing users to enter and exit a voice channel to make for quick voice
 communication. Discord served as our primary means of communication regarding
 sharing documents, organizing team meetings, asking questions, and talking about
 anything relating to senior design. Doing this allowed us to keep all our conversations in
 one place and keep a record of anything that was talked about.

 The second tool we used for communication was Zoom for any virtual meetings that our
 team had. Zoom is a web conferencing platform used for both audio and video
 conferencing. The reason we chose to use Zoom for voice meetings rather than Discord is
 that Zoom gives you the ability to record meetings. Since there were instances where not
 every single team member could attend a meeting, Zoom allowed us to all remain on the
 same page.

 Our team met twice a week during the design process on Mondays and Thursdays. On
 Mondays, we would have a virtual meeting through zoom, and on Thursdays, we would
 have a physical meeting on campus. In these meetings, we would brainstorm ideas for our
 project, discuss any upcoming deadlines, outline the expectations expected to be met by
 the next meeting, and discuss in detail how we design our project.

 With four people working on one paper, it was important to ensure the paper read as if
 one person had written it. To accomplish this, a tool that our team chose to use was
 google docs. While this platform does not have as many functionalities as Microsoft
 Word, it is free and designed to allow many people to work on one document. Using
 Google Docs allowed us to see each member's work as it was being written in real time
 since we were all working on a single document instead of several unique copies.
 Additionally, this platform allowed formatting issues to be alleviated since we could
 change what another member wrote.

 How we managed our team for senior design one proved to work well; thus, we followed
 the same structure during the senior design two semester. However, our meetings
 transitioned from ones where we were brainstorming ideas to ones where we were
 prototyping them, producing real deliverables, and having discussions on what we needed
 to do to deliver a final product at the end of the semester.

 124

 16.0 Conclusion
 The smart parking system that we have presented in this paper brought all of our team
 members’ skills to test in addition, it allowed us to see how all of our skills would
 complement each other. The implementation of sensors aided us in learning about
 embedded system programming and chip and power design. The implementation of a
 video camera helped broaden our horizon of skills in machine learning and artificial
 intelligence development. Our website would have posed as an effective outlet to show
 creativity in web development through UI-UX design; however, the control unit’s GUI
 program was leveraged highly in that matter.

 The ongoing implementation of Smart Parking shows that there is a huge possibility of
 this sector growing from a business perspective, and from a user endpoint of view, it can
 be observed that the need for a robust smart parking system will only increase with the
 flow of time. Acquiring data from the current system providers and utilizing their vision
 as a fraction of this project’s motivation, the team has tried to potentially present a way
 for a promising system that can revolutionize the technologies implemented for smart
 parking and aid in lessening the daily hassles of urban city parking issues.

 PCB design implications and communication between the camera and control unit via
 ethernet bus make the Smart Parking Project competitive against the current technology.
 The project brings in possibilities for technological improvements on the firmware side as
 well as the web development side. Implementation of segment LED signs can also aid in
 a fail-safe process if a website outage occurs. Throughout the project, various research
 and articles have been considered to pick the perfect technology that supports the system.
 A lot of different technologies were considered and looked into throughout the process,
 and in consideration of the developers' skill set as well as to stay relevant with the
 ever-expanding technologies - the product mechanism choices were made. Various
 standards and requirements were kept in consideration to meet the safety protocols of the
 system and the individuals during the implementation and the test process.

 With the ambitious range, this project has helped the team grow as engineers as well as
 provide value to not only UCF but a solution that could potentially be able to be utilized
 globally. The scalability of the implementation of the system in terms of computer vision
 allows the Smart Parking Garage project to be marketed in various usages. In the simplest
 form, the project's goal was to assist everyone in making a part of their significant lives
 easier. As engineers, we were motivated to achieve this goal to serve the community as
 well as learn new technologies and become a better version of ourselves in the future.

 125

 References
 [1] https://docs.luxonis.com/en/latest/
 [2] https://ams.com/en/belago1.1
 [3] https://opencv.org/
 [4] “The Good and the Bad of Ionic Mobile Development.” Altexsoft.com. Available:
 https://www.altexsoft.com/blog/engineering/the-good-and-the-bad-of-ionic-mobile-devel
 opment/
 [5] “Benefits of Ionic Framework in Mobile App Development.” Biz4group.com.
 Available:
 https://www.biz4group.com/blog/benefits-of-ionic-framework-in-mobile-app-developme
 nt
 [6] W. Rozwadowski, “ Pros & Cons of Flutter Mobile Development.” Futuremind.com.
 Available: https://www.futuremind.com/blog/pros-cons-flutter-mobile-development
 [7] M. Berka, “Flutter Pros & Cons – Should You Use it in Your Project.” Invotech.co.
 Available: https://invotech.co/blog/flutter-pros-cons-should-you-use-it-in-your-project/
 [8] K. Shah, “Advantages and Disadvantages of React Native Development in 2022.”
 Thirdrocktechkno.com. Available:
 https://www.thirdrocktechkno.com/blog/pros-and-cons-of-react-native-development-in-2
 021/
 [9] S. Vidjikant, “Xamarin App Development: Advantages and Disadvantages.”
 Softjour.com. Available:
 https://softjourn.com/insights/xamarin-app-development-advantages-and-disadvantages
 [10] “Xamarin.” Microsoft.com. Available:
 https://dotnet.microsoft.com/en-us/apps/xamarin
 [11] S. Watts, and M. Raza, “SaaS vs. PaaS vs. IaaS: What’s The Difference & How to
 Choose.” Bmc.com. Available:
 https://www.bmc.com/blogs/saas-vs-paas-vs-iaas-whats-the-difference-and-how-to-choos
 e/
 [12] https://newsroom.intel.com/wp-content/uploads/sites/11/2017/08/movidius-myriad-x
 vpu-product-brief.pdf
 [13] https://www.seeedstudio.com/ODYSSEY-X86J4125864-Win10-Enterprise-Activated
 -p-4917.html
 [14] https://www.sparkfun.com/products/14718
 [15] https://en.wikipedia.org/wiki/Canny_edge_detector
 [16] https://www.mygreatlearning.com/blog/introduction-to-edge-detection/
 [17] https://stackoverflow.com/questions/45322630/how-to-detect-lines-in-opencv
 [18] https://web.ipac.caltech.edu/staff/fmasci/home/astro_refs/HoughTrans_lines_09.pdf
 [19] https://www.ieee.org/about/corporate/governance/p7-8.html
 [20] https://www.osha.gov/sites/default/files/publications/osha3075.pdf
 [21] https://inst.eecs.berkeley.edu/~ee122/sp07/80211.pdf
 [22] https://www.pcmag.com/encyclopedia/term/cellular-mod
 [23] https://store.hologram.io/store/nova-global-cellular-modem/36/
 [24] https://www.hologram.io/pricing/flexible-data
 [25] https://www.quectel.com/company
 [26] https://www.verizon.com/internet-devices/
 [27] https://en.wikipedia.org/wiki/IP_Code

https://docs.luxonis.com/en/latest/
https://ams.com/en/belago1.1
https://opencv.org/
https://www.altexsoft.com/blog/engineering/the-good-and-the-bad-of-ionic-mobile-development/
https://www.altexsoft.com/blog/engineering/the-good-and-the-bad-of-ionic-mobile-development/
https://www.altexsoft.com/blog/engineering/the-good-and-the-bad-of-ionic-mobile-development/
https://www.biz4group.com/blog/benefits-of-ionic-framework-in-mobile-app-development
https://www.biz4group.com/blog/benefits-of-ionic-framework-in-mobile-app-development
https://www.biz4group.com/blog/benefits-of-ionic-framework-in-mobile-app-development
https://www.futuremind.com/blog/pros-cons-flutter-mobile-development
https://invotech.co/blog/flutter-pros-cons-should-you-use-it-in-your-project/
https://www.thirdrocktechkno.com/blog/pros-and-cons-of-react-native-development-in-2021/
https://www.thirdrocktechkno.com/blog/pros-and-cons-of-react-native-development-in-2021/
https://www.thirdrocktechkno.com/blog/pros-and-cons-of-react-native-development-in-2021/
https://softjourn.com/insights/xamarin-app-development-advantages-and-disadvantages
https://softjourn.com/insights/xamarin-app-development-advantages-and-disadvantages
https://dotnet.microsoft.com/en-us/apps/xamarin
https://dotnet.microsoft.com/en-us/apps/xamarin
https://www.bmc.com/blogs/saas-vs-paas-vs-iaas-whats-the-difference-and-how-to-choose/
https://www.bmc.com/blogs/saas-vs-paas-vs-iaas-whats-the-difference-and-how-to-choose/
https://www.bmc.com/blogs/saas-vs-paas-vs-iaas-whats-the-difference-and-how-to-choose/
https://www.seeedstudio.com/ODYSSEY-X86J4125864-Win10-Enterprise-Activated-p-4917.html
https://www.seeedstudio.com/ODYSSEY-X86J4125864-Win10-Enterprise-Activated-p-4917.html
https://www.sparkfun.com/products/14718
https://en.wikipedia.org/wiki/Canny_edge_detector
https://www.mygreatlearning.com/blog/introduction-to-edge-detection/
https://stackoverflow.com/questions/45322630/how-to-detect-lines-in-opencv
https://web.ipac.caltech.edu/staff/fmasci/home/astro_refs/HoughTrans_lines_09.pdf
https://www.ieee.org/about/corporate/governance/p7-8.html
https://www.osha.gov/sites/default/files/publications/osha3075.pdf
https://inst.eecs.berkeley.edu/~ee122/sp07/80211.pdf
https://www.pcmag.com/encyclopedia/term/cellular-mod
https://store.hologram.io/store/nova-global-cellular-modem/36/
https://www.hologram.io/pricing/flexible-data
https://www.quectel.com/company
https://www.verizon.com/internet-devices/
https://en.wikipedia.org/wiki/IP_Code

 126

 [28] https://rainfordsolutions.com/products/ingress-protection-ip-rated-enclosures/ip-encl
 osure-ratings-standards-explained/
 [29] https://ubuntu.com/blog/what-is-an-ubuntu-lts-release
 [30] https://www.baesystems.com/en-us/definition/what-are-single-board-computers
 [31] https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=578032
 [32] https://www.protoexpress.com/blog/ipc-j-std-001-standard-soldering-requirements/
 [33] https://pyimagesearch.com/2018/11/12/yolo-object-detection-with-opencv/
 [34] https://en.wikipedia.org/wiki/IEEE_802.3
 [35] https://en.wikipedia.org/wiki/Power_over_Ethernet
 [36] Luxonis, depthai-experiments v3.2.0 [Computer software],

 github.com/luxonis/depthai-experiments
 [37] OpenVino. (n.d.). Vehicle-detection-ADAS-0002 - openvino™ toolkit. OpenVINO.

 Retrieved November 13, 2022, from
 https://docs.openvino.ai/2021.2/omz_models_intel_vehicle_detection_adas_0002_des
 cription_vehicle_detection_adas_0002.html

https://rainfordsolutions.com/products/ingress-protection-ip-rated-enclosures/ip-enclosure-ratings-standards-explained/
https://rainfordsolutions.com/products/ingress-protection-ip-rated-enclosures/ip-enclosure-ratings-standards-explained/
https://ubuntu.com/blog/what-is-an-ubuntu-lts-release
https://www.baesystems.com/en-us/definition/what-are-single-board-computers
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=578032
https://www.protoexpress.com/blog/ipc-j-std-001-standard-soldering-requirements/
https://pyimagesearch.com/2018/11/12/yolo-object-detection-with-opencv/
https://en.wikipedia.org/wiki/IEEE_802.3
https://en.wikipedia.org/wiki/Power_over_Ethernet
https://docs.openvino.ai/2021.2/omz_models_intel_vehicle_detection_adas_0002_description_vehicle_detection_adas_0002.html
https://docs.openvino.ai/2021.2/omz_models_intel_vehicle_detection_adas_0002_description_vehicle_detection_adas_0002.html

